{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load the dataset as pandas dataframe" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df=pd.read_json(\"Cu_FHIaims-PBE-dataset.json\", orient=\"records\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(50000, 13)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
COORDINATES_TYPE_COORDINATES_OCCUPATIONNUMBER_OF_ATOMSenergyforcespbccellenergy_correctedenergy_corrected_per_atomdminw_energyw_forces
0relative[[0.0, 0.0, 0.0], [0.8160455395, 0.0801130089,...[Cu, Cu]2-90486.436230[[-0.1915810373, 0.0379360839, 0.4867174382], ...True[[4.848667, 0.0, 1.908224], [-5.75563299999999...-1.525491-0.7627453.5560002.480000e-08[5.145e-07, 5.145e-07]
1absolute[[0.0, 0.0, 0.0], [5.57258, 0.0, 0.0], [4.1794...[Cu, Cu, Cu, Cu]4-180970.297879[[0.0698542207, 0.0068889898, 0.0002778336], [...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-0.476400-0.1191004.6205381.830000e-08[4.822e-07, 4.467e-07, 4.207e-07, 4.4590000000...
2relative[[0.0, 0.0, 0.0], [0.4123217421, 0.50162497540...[Cu, Cu]2-90485.083515[[-0.027534297000000003, 0.1173325365, 0.14462...True[[6.391525, 0.0, -2.533046], [4.143618, 6.1084...-0.172775-0.0863885.0800001.810000e-08[4.6140000000000004e-07, 4.6140000000000004e-07]
3absolute[[0.0, 0.0, 0.0], [4.556401, 1.091969, -1.0795...[Cu, Cu, Cu, Cu]4-180972.777650[[-0.0855274058, 2.5143827853, 2.3198918138], ...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-2.956170-0.7390431.9925022.450000e-08[5.1e-08, 6.446e-07, 3.8580000000000003e-07, 4...
4relative[[0.6496935505, 0.3274752788, 0.5129023611], [...[Cu, Cu, Cu]3-135731.709869[[-0.1535250974, -0.047388247, 0.0613077861000...True[[6.143789, -0.257681, -0.07058199999999999], ...-4.343759-1.4479203.3530723.640000e-08[9.339000000000001e-07, 9.127000000000001e-07,...
5absolute[[0.0, 0.0, 0.0], [1.61645, 0.0, 1.61645], [1....[Cu, Cu, Cu, Cu]4-180974.670673[[-0.6176144783, -0.8761094019000001, 0.258511...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-4.849193-1.2122982.2860063.170000e-08[3.773e-07, 7.582e-07, 5.727e-07, 5.4050000000...
6absolute[[0.0, 0.0, 0.0], [-1.6131199999999999, 1.6131...[Cu, Cu, Cu, Cu]4-180970.159414[[0.0227811696, 0.0289627116, -0.0781500772], ...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-0.337934-0.0844844.5625851.810000e-08[4.738e-07, 4.16e-07, 4.235e-07, 4.773e-07]
7relative[[0.0, 0.0, 0.0], [0.9652789309, 0.4831846134,...[Cu, Cu]2-90486.136238[[0.1264675833, -0.060561094600000004, 0.22545...True[[3.60428, 0.0, -1.8775680000000001], [1.16378...-1.225498-0.6127494.0640002.300000e-08[5.686e-07, 5.686e-07]
8relative[[0.0131432118, 0.9860287683000001, 0.99278196...[Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, C...16-723879.321694[[-0.0010557207, -0.0035592191000000002, -0.00...True[[7.697516, -13.531654, -0.346642], [7.535715,...-0.035777-0.0022367.0372691.740000e-08[4.608e-07, 4.608e-07, 4.608e-07, 4.608e-07, 4...
9absolute[[0.0, 0.0, 0.0], [-2.13106, 4.368136, 3.69147...[Cu, Cu, Cu, Cu, Cu]5-226215.515302[[-0.2179051853, -0.2102716822, 0.4171962212],...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-3.238453-0.6476912.1522982.340000e-08[4.892e-07, 6.179e-07, 3.483e-07, 3.945e-07, 4...
\n", "
" ], "text/plain": [ " COORDINATES_TYPE _COORDINATES \\\n", "0 relative [[0.0, 0.0, 0.0], [0.8160455395, 0.0801130089,... \n", "1 absolute [[0.0, 0.0, 0.0], [5.57258, 0.0, 0.0], [4.1794... \n", "2 relative [[0.0, 0.0, 0.0], [0.4123217421, 0.50162497540... \n", "3 absolute [[0.0, 0.0, 0.0], [4.556401, 1.091969, -1.0795... \n", "4 relative [[0.6496935505, 0.3274752788, 0.5129023611], [... \n", "5 absolute [[0.0, 0.0, 0.0], [1.61645, 0.0, 1.61645], [1.... \n", "6 absolute [[0.0, 0.0, 0.0], [-1.6131199999999999, 1.6131... \n", "7 relative [[0.0, 0.0, 0.0], [0.9652789309, 0.4831846134,... \n", "8 relative [[0.0131432118, 0.9860287683000001, 0.99278196... \n", "9 absolute [[0.0, 0.0, 0.0], [-2.13106, 4.368136, 3.69147... \n", "\n", " _OCCUPATION NUMBER_OF_ATOMS \\\n", "0 [Cu, Cu] 2 \n", "1 [Cu, Cu, Cu, Cu] 4 \n", "2 [Cu, Cu] 2 \n", "3 [Cu, Cu, Cu, Cu] 4 \n", "4 [Cu, Cu, Cu] 3 \n", "5 [Cu, Cu, Cu, Cu] 4 \n", "6 [Cu, Cu, Cu, Cu] 4 \n", "7 [Cu, Cu] 2 \n", "8 [Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, Cu, C... 16 \n", "9 [Cu, Cu, Cu, Cu, Cu] 5 \n", "\n", " energy forces pbc \\\n", "0 -90486.436230 [[-0.1915810373, 0.0379360839, 0.4867174382], ... True \n", "1 -180970.297879 [[0.0698542207, 0.0068889898, 0.0002778336], [... False \n", "2 -90485.083515 [[-0.027534297000000003, 0.1173325365, 0.14462... True \n", "3 -180972.777650 [[-0.0855274058, 2.5143827853, 2.3198918138], ... False \n", "4 -135731.709869 [[-0.1535250974, -0.047388247, 0.0613077861000... True \n", "5 -180974.670673 [[-0.6176144783, -0.8761094019000001, 0.258511... False \n", "6 -180970.159414 [[0.0227811696, 0.0289627116, -0.0781500772], ... False \n", "7 -90486.136238 [[0.1264675833, -0.060561094600000004, 0.22545... True \n", "8 -723879.321694 [[-0.0010557207, -0.0035592191000000002, -0.00... True \n", "9 -226215.515302 [[-0.2179051853, -0.2102716822, 0.4171962212],... False \n", "\n", " cell energy_corrected \\\n", "0 [[4.848667, 0.0, 1.908224], [-5.75563299999999... -1.525491 \n", "1 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -0.476400 \n", "2 [[6.391525, 0.0, -2.533046], [4.143618, 6.1084... -0.172775 \n", "3 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -2.956170 \n", "4 [[6.143789, -0.257681, -0.07058199999999999], ... -4.343759 \n", "5 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -4.849193 \n", "6 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -0.337934 \n", "7 [[3.60428, 0.0, -1.8775680000000001], [1.16378... -1.225498 \n", "8 [[7.697516, -13.531654, -0.346642], [7.535715,... -0.035777 \n", "9 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -3.238453 \n", "\n", " energy_corrected_per_atom dmin w_energy \\\n", "0 -0.762745 3.556000 2.480000e-08 \n", "1 -0.119100 4.620538 1.830000e-08 \n", "2 -0.086388 5.080000 1.810000e-08 \n", "3 -0.739043 1.992502 2.450000e-08 \n", "4 -1.447920 3.353072 3.640000e-08 \n", "5 -1.212298 2.286006 3.170000e-08 \n", "6 -0.084484 4.562585 1.810000e-08 \n", "7 -0.612749 4.064000 2.300000e-08 \n", "8 -0.002236 7.037269 1.740000e-08 \n", "9 -0.647691 2.152298 2.340000e-08 \n", "\n", " w_forces \n", "0 [5.145e-07, 5.145e-07] \n", "1 [4.822e-07, 4.467e-07, 4.207e-07, 4.4590000000... \n", "2 [4.6140000000000004e-07, 4.6140000000000004e-07] \n", "3 [5.1e-08, 6.446e-07, 3.8580000000000003e-07, 4... \n", "4 [9.339000000000001e-07, 9.127000000000001e-07,... \n", "5 [3.773e-07, 7.582e-07, 5.727e-07, 5.4050000000... \n", "6 [4.738e-07, 4.16e-07, 4.235e-07, 4.773e-07] \n", "7 [5.686e-07, 5.686e-07] \n", "8 [4.608e-07, 4.608e-07, 4.608e-07, 4.608e-07, 4... \n", "9 [4.892e-07, 6.179e-07, 3.483e-07, 3.945e-07, 4... " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Statistic of the dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Number of periodic and non-periodic structures:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True 26420\n", "False 23580\n", "Name: pbc, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"pbc\"].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Distribution of the periodic structures by number of atoms" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEXCAYAAABsyHmSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcoklEQVR4nO3de7xVdZ3/8ddbyHuJF4YxQKHkoaGV4Umd0WYcKcVL4syg4c8KGyZmHmFjTlNef6M/ix76a4q00hlGSTATDSv5eR285aNfIwrKTwU0TqICop7AW1oq+vn9sb4bFsezz9l8OXvvsznv5+OxH2et77p91oLDm3XZ36WIwMzMLMc2zS7AzMxal0PEzMyyOUTMzCybQ8TMzLI5RMzMLJtDxMzMsjlEzJpE0m2SJmUu+5SkT6bhcyVd2bvVmdVmYLMLMGs1kp4ChgBvA68BtwGnR8TvN2c9EXFMb9QTEd/qjfWY5fCZiFmeT0fEzsAYoA04v9YFVfDvnm0V/BfZbAtExGqKM5EDJB0q6deSXpL0/yQdUZlP0r2Spkn6v8DrwAdS29+n6dtIOl/S05JekDRb0i6l5T+Xpq2VdF65BkkXSvpxafzwUh0rJZ1W36Ng/ZlDxGwLSBoOHAusAW4BvgnsBvwLcKOkwaXZPwdMAd4LPN1pVaelz18BHwB2Bn6QtjEauCIt/35gd2BYlXr2pgi17wODgQOBxVu0k2bdcIiY5fmFpJeAXwG/BFYBt0bErRHxTkTMBxZSBEzF1RGxJCLWR8RbndZ3KvDdiHgy3Vs5B5goaSAwAbg5Iu6LiDeA/wm8U6Wu/wHcGRHXRcRbEbE2IhwiVjcOEbM8J0bEoIjYOyK+RHGj/aR0CemlFDCHA3uWllnZzfrez6ZnJ09TPPgyJE3bsGxEvAasrbKe4cBvN3tvzDL56Syz3rESuCYivtjNPN11mf0ssHdpfC9gPfA8xaWyD1UmSNqR4pJWtToOrqVgs97gMxGz3vFj4NOSjpY0QNL2ko6Q1OW9iy5cB5wpaaSknYFvAddHxHpgLnB8umG+LXAR1X93rwU+KelkSQMl7S7pwC3cN7OqHCJmvSAiVgLjgXOBDoozgq9R++/YTOAa4D5gBfBH4Mtp3UuAqcBPKM5KXqS4B9NVHc9Q3If5KrCO4qb6R3P2yawW8kupzMwsl89EzMwsm0PEzMyyOUTMzCybQ8TMzLL1u++J7LHHHjFixIhml2Fm1lIWLVr0u4gY3Lm934XIiBEjWLhwYbPLMDNrKZI69/cG+HKWmZltAYeImZllc4iYmVk2h4iZmWWrW4hImpne0PZYqe3bkh6X9Iikn0saVJp2jqR2SU9IOrrUPi61tUs6u9Q+UtKC1H596pjOzMwaqJ5nIlcD4zq1zQcOiIiPAL+hePFO5c1tE4H90zKXp55QBwA/BI4BRgOnpHkBLgGmR8Q+FB3STa7jvpiZWRfqFiIRcR9FL6Lltv9KXVsD3M/GV3yOB+ZExBsRsQJop3gnwsFAe3rb25vAHGC8JAFHUnSRDTALOLFe+2JmZl1r5j2Rv6N4FzTAUDZ969uq1FatfXfgpVIgVdrNzKyBmhIiks6jeGvbtQ3a3hRJCyUt7OjoaMQmzcz6hYZ/Y13SacDxwNjY+DKT1RTvhq4Yltqo0r4WGCRpYDobKc//LhExA5gB0NbWlv0ClRFn37Jh+KmLj8tdjZnZVqOhZyKSxgFfB06IiNdLk+YBEyVtJ2kkMAp4AHgQGJWexNqW4ub7vBQ+9wAT0vKTgJsatR9mZlao5yO+1wH/DewraZWkycAPgPcC8yUtlvTvsOH1nzcAS4HbgakR8XY6yzgduANYBtyQ5gU4C/hnSe0U90iuqte+mJlZ1+p2OSsiTumiueo/9BExDZjWRfutwK1dtD9J8fSWmZk1ib+xbmZm2RwiZmaWzSFiZmbZHCJmZpbNIWJmZtkcImZmls0hYmZm2RwiZmaWzSFiZmbZHCJmZpbNIWJmZtkcImZmls0hYmZm2RwiZmaWzSFiZmbZHCJmZpbNIWJmZtkcImZmls0hYmZm2RwiZmaWzSFiZmbZHCJmZpbNIWJmZtkcImZmls0hYmZm2RwiZmaWrW4hImmmpBckPVZq203SfEnL089dU7skXSapXdIjksaUlpmU5l8uaVKp/SBJj6ZlLpOkeu2LmZl1rZ5nIlcD4zq1nQ3cFRGjgLvSOMAxwKj0mQJcAUXoABcAhwAHAxdUgifN88XScp23ZWZmdVa3EImI+4B1nZrHA7PS8CzgxFL77CjcDwyStCdwNDA/ItZFxIvAfGBcmva+iLg/IgKYXVqXmZk1SKPviQyJiDVp+DlgSBoeCqwszbcqtXXXvqqL9i5JmiJpoaSFHR0dW7YHZma2QdNurKcziGjQtmZERFtEtA0ePLgRmzQz6xcaHSLPp0tRpJ8vpPbVwPDSfMNSW3ftw7poNzOzBmp0iMwDKk9YTQJuKrV/Pj2ldSjwcrrsdQdwlKRd0w31o4A70rRXJB2ansr6fGldZmbWIAPrtWJJ1wFHAHtIWkXxlNXFwA2SJgNPAyen2W8FjgXagdeBLwBExDpJ3wAeTPNdFBGVm/VfongCbAfgtvQxM7MGqluIRMQpVSaN7WLeAKZWWc9MYGYX7QuBA7akRjMz2zL+xrqZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWbamhIikMyUtkfSYpOskbS9ppKQFktolXS9p2zTvdmm8PU0fUVrPOan9CUlHN2NfzMz6s4aHiKShwD8BbRFxADAAmAhcAkyPiH2AF4HJaZHJwIupfXqaD0mj03L7A+OAyyUNaOS+mJn1d826nDUQ2EHSQGBHYA1wJDA3TZ8FnJiGx6dx0vSxkpTa50TEGxGxAmgHDm5Q/WZmRhNCJCJWA/8GPEMRHi8Di4CXImJ9mm0VMDQNDwVWpmXXp/l3L7d3scwmJE2RtFDSwo6Ojt7dITOzfqwZl7N2pTiLGAm8H9iJ4nJU3UTEjIhoi4i2wYMH13NTZmb9SjMuZ30SWBERHRHxFvAz4DBgULq8BTAMWJ2GVwPDAdL0XYC15fYuljEzswZoRog8Axwqacd0b2MssBS4B5iQ5pkE3JSG56Vx0vS7IyJS+8T09NZIYBTwQIP2wczMKG5wN1RELJA0F3gIWA88DMwAbgHmSPpmarsqLXIVcI2kdmAdxRNZRMQSSTdQBNB6YGpEvN3QnTEz6+caHiIAEXEBcEGn5ifp4umqiPgjcFKV9UwDpvV6gWZmVhN/Y93MzLLVFCKSPlzvQszMrPXUeiZyuaQHJH1J0i51rcjMzFpGTSESEZ8ATqV4pHaRpJ9I+lRdKzMzsz6v5nsiEbEcOB84C/hL4DJJj0v6m3oVZ2ZmfVut90Q+Imk6sIyij6tPR8SH0vD0OtZnZmZ9WK2P+H4fuBI4NyL+UGmMiGclnV+XyszMrM+rNUSOA/5Q+TKfpG2A7SPi9Yi4pm7VmZlZn1brPZE7gR1K4zumNjMz68dqDZHtI+L3lZE0vGN9SjIzs1ZRa4i8JmlMZUTSQcAfupnfzMz6gVrviXwF+KmkZwEBfwp8pm5VmZlZS6gpRCLiQUn7AfumpifSu0DMzKwf25xefD8OjEjLjJFERMyuS1VmZtYSagoRSdcAHwQWA5V3dgTgEDEz68dqPRNpA0anNwqamZkBtT+d9RjFzXQzM7MNaj0T2QNYKukB4I1KY0ScUJeqzMysJdQaIhfWswgzM2tNtT7i+0tJewOjIuJOSTsCA+pbmpmZ9XW1dgX/RWAu8B+paSjwi3oVZWZmraHWG+tTgcOAV2DDC6r+pF5FmZlZa6g1RN6IiDcrI5IGUnxPxMzM+rFaQ+SXks4FdkjvVv8p8H/qV5aZmbWCWkPkbKADeBT4B+BWivetm5lZP1ZTiETEOxHxnxFxUkRMSMPZl7MkDZI0V9LjkpZJ+jNJu0maL2l5+rlrmleSLpPULumRTl3ST0rzL5c0KbceMzPLU+vTWSskPdn5swXbvRS4PSL2Az4KLKM427krIkYBd6VxgGOAUekzBbgi1bQbcAFwCHAwcEEleMzMrDE2p++siu2Bk4DdcjYoaRfgL4DTANIN+zcljQeOSLPNAu4FzgLGA7PTmc/96SxmzzTv/IhYl9Y7HxgHXJdTl5mZbb5aL2etLX1WR8T3gOMytzmS4v7KjyQ9LOlKSTsBQyJiTZrnOWBIGh4KrCwtvyq1VWs3M7MGqbUr+DGl0W0ozkw2510knbc5BvhyRCyQdCkbL10BEBEhqdceIZY0heJSGHvttVdvrdbMrN+rNQi+UxpeDzwFnJy5zVXAqohYkMbnUoTI85L2jIg16XLVC2n6amB4aflhqW01Gy9/Vdrv7WqDETEDmAHQ1tbm77eYmfWSWvvO+qve2mBEPCdppaR9I+IJYCywNH0mARennzelReYBp0uaQ3ET/eUUNHcA3yrdTD8KOKe36jQzs57Vejnrn7ubHhHf3cztfhm4VtK2wJPAFyguk90gaTLwNBvPdG4FjgXagdfTvETEOknfAB5M811UucluZmaNsTlPZ32c4qwA4NPAA8DynI1GxGI2feKrYmwX8wZF311drWcmMDOnBjMz23K1hsgwYExEvAog6ULgloj4bL0KMzOzvq/Wbk+GAG+Wxt9k4yO4ZmbWT9V6JjIbeEDSz9P4iRRfCDQzs36s1qezpkm6DfhEavpCRDxcv7LMzKwV1Ho5C2BH4JWIuBRYJWlknWoyM7MWUWsHjBdQ9GNV+R7Ge4Af16soMzNrDbWeifw1cALwGkBEPAu8t15FmZlZa6g1RN5M39cIgNRhopmZ9XO1hsgNkv4DGCTpi8CdwH/WrywzM2sFPT6dJUnA9cB+wCvAvsC/RsT8OtdmZmZ9XI8hkrplvzUiPgw4OMzMbINaL2c9JOnjda3EzMxaTq3fWD8E+Kykpyie0BLFScpH6lWYmZn1fd2GiKS9IuIZ4OgG1WNmZi2kpzORX1D03vu0pBsj4m8bUZSZmbWGnu6JqDT8gXoWYmZmraenEIkqw2ZmZj1ezvqopFcozkh2SMOw8cb6++panZmZ9WndhkhEDGhUIWZm1no2pyt4MzOzTThEzMwsm0PEzMyyOUTMzCybQ8TMzLI5RMzMLJtDxMzMsjUtRCQNkPSwpJvT+EhJCyS1S7pe0rapfbs03p6mjyit45zU/oSkPt1J5Iizb9nwMTPbWjTzTOQMYFlp/BJgekTsA7wITE7tk4EXU/v0NB+SRgMTgf2BccDlkvzlSDOzBmpKiEgaBhwHXJnGBRwJzE2zzAJOTMPj0zhp+tg0/3hgTkS8ERErgHbg4MbsgZmZQfPORL4HfB14J43vDrwUEevT+CpgaBoeCqwESNNfTvNvaO9imU1ImiJpoaSFHR0dvbkfZmb9WsNDRNLxwAsRsahR24yIGRHRFhFtgwcPbtRmzcy2erW+Hrc3HQacIOlYYHvgfcClwCBJA9PZxjBgdZp/NTAcWCVpILALsLbUXlFexszMGqDhZyIRcU5EDIuIERQ3xu+OiFOBe4AJabZJwE1peF4aJ02/OyIitU9MT2+NBEYBDzRoN8zMjOaciVRzFjBH0jeBh4GrUvtVwDWS2oF1FMFDRCyRdAOwFFgPTI2ItxtftplZ/9XUEImIe4F70/CTdPF0VUT8ETipyvLTgGn1q9DMzLrjb6ybmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWba+9FIqq8GIs2/ZMPzUxcc1sRIzM5+JmJnZFnCImJlZNoeImZllc4iYmVk2h4iZmWVziJiZWTaHiJmZZXOImJlZNn/ZsBf4C4Bm1l/5TMTMzLI1PEQkDZd0j6SlkpZIOiO17yZpvqTl6eeuqV2SLpPULukRSWNK65qU5l8uaVKj98XMrL9rxpnIeuCrETEaOBSYKmk0cDZwV0SMAu5K4wDHAKPSZwpwBRShA1wAHAIcDFxQCR4zM2uMhodIRKyJiIfS8KvAMmAoMB6YlWabBZyYhscDs6NwPzBI0p7A0cD8iFgXES8C84FxDdwVM7N+r6n3RCSNAD4GLACGRMSaNOk5YEgaHgqsLC22KrVVa+9qO1MkLZS0sKOjo9fqNzPr75oWIpJ2Bm4EvhIRr5SnRUQA0VvbiogZEdEWEW2DBw/urdWamfV7TQkRSe+hCJBrI+Jnqfn5dJmK9POF1L4aGF5afFhqq9ZuZmYN0oynswRcBSyLiO+WJs0DKk9YTQJuKrV/Pj2ldSjwcrrsdQdwlKRd0w31o1KbmZk1SDO+bHgY8DngUUmLU9u5wMXADZImA08DJ6dptwLHAu3A68AXACJinaRvAA+m+S6KiHWN2QUzM4MmhEhE/ApQlclju5g/gKlV1jUTmNl71ZmZ2ebwN9bNzCybQ8TMzLI5RMzMLJtDxMzMsjlEzMwsm0PEzMyy+aVUmcovojIz6698JmJmZtkcImZmls0hYmZm2RwiZmaWzSFiZmbZHCJmZpbNIWJmZtn8PZFeVv7+yFMXH9fESszM6s9nImZmls0hYmZm2RwiZmaWzfdEzJrI99Cs1flMxMzMsjlEzMwsm0PEzMyy+Z5Ik/mauJm1ModIHbXSi6scZmaWw5ezzMwsm0PEzMyytfzlLEnjgEuBAcCVEXFxk0vqUbXLXK16SalV6zazLdfSISJpAPBD4FPAKuBBSfMiYmlzK7Na9cUAqhbyfaU+a46++He1L2jpEAEOBtoj4kkASXOA8YBDpEnq/YtWr/XX8hBELfPUUlMrPXDRH/jPY8soIppdQzZJE4BxEfH3afxzwCERcXqn+aYAU9LovsATm7mpPYDfbWG5zdLKtYPrbzbX31x9qf69I2Jw58ZWPxOpSUTMAGbkLi9pYUS09WJJDdPKtYPrbzbX31ytUH+rP521GhheGh+W2szMrAFaPUQeBEZJGilpW2AiMK/JNZmZ9RstfTkrItZLOh24g+IR35kRsaQOm8q+FNYHtHLt4PqbzfU3V5+vv6VvrJuZWXO1+uUsMzNrIoeImZllc4h0Q9I4SU9Iapd0drPr6Ymk4ZLukbRU0hJJZ6T23STNl7Q8/dy12bV2R9IASQ9LujmNj5S0IP05XJ8eouiTJA2SNFfS45KWSfqzVjr+ks5Mf3cek3SdpO378vGXNFPSC5IeK7V1ebxVuCztxyOSxjSv8g21dlX/t9Pfn0ck/VzSoNK0c1L9T0g6ujlVb8ohUkWpS5VjgNHAKZJGN7eqHq0HvhoRo4FDgamp5rOBuyJiFHBXGu/LzgCWlcYvAaZHxD7Ai8DkplRVm0uB2yNiP+CjFPvREsdf0lDgn4C2iDiA4mGVifTt4381MK5TW7XjfQwwKn2mAFc0qMbuXM27658PHBARHwF+A5wDkH6XJwL7p2UuT/9ONZVDpLoNXapExJtApUuVPisi1kTEQ2n4VYp/wIZS1D0rzTYLOLE5FfZM0jDgOODKNC7gSGBumqXP1i9pF+AvgKsAIuLNiHiJFjr+FE9s7iBpILAjsIY+fPwj4j5gXafmasd7PDA7CvcDgyTt2ZhKu9ZV/RHxXxGxPo3eT/H9NyjqnxMRb0TECqCd4t+ppnKIVDcUWFkaX5XaWoKkEcDHgAXAkIhYkyY9BwxpUlm1+B7wdeCdNL478FLpl6ov/zmMBDqAH6XLcVdK2okWOf4RsRr4N+AZivB4GVhE6xz/imrHuxV/p/8OuC0N98n6HSJbIUk7AzcCX4mIV8rTonimu08+1y3peOCFiFjU7FoyDQTGAFdExMeA1+h06aqPH/9dKf63OxJ4P7AT777U0lL68vHuiaTzKC5RX9vsWrrjEKmuJbtUkfQeigC5NiJ+lpqfr5y2p58vNKu+HhwGnCDpKYrLh0dS3GMYlC6vQN/+c1gFrIqIBWl8LkWotMrx/ySwIiI6IuIt4GcUfyatcvwrqh3vlvmdlnQacDxwamz8Ml+frN8hUl3LdamS7h9cBSyLiO+WJs0DJqXhScBNja6tFhFxTkQMi4gRFMf77og4FbgHmJBm68v1PweslLRvahpL8VqCljj+FJexDpW0Y/q7VKm/JY5/SbXjPQ/4fHpK61Dg5dJlrz5DxYv2vg6cEBGvlybNAyZK2k7SSIoHBB5oRo2biAh/qnyAYymejvgtcF6z66mh3sMpTt0fARanz7EU9xXuApYDdwK7NbvWGvblCODmNPwBil+WduCnwHbNrq+bug8EFqY/g18Au7bS8Qf+F/A48BhwDbBdXz7+wHUU92/eojgTnFzteAOieOLyt8CjFE+h9cX62ynufVR+h/+9NP95qf4ngGOaXX9EuNsTMzPL58tZZmaWzSFiZmbZHCJmZpbNIWJmZtkcImZmls0hYmZm2Rwi1vIkhaTvlMb/RdKFafhqSRM6zf/79HNEWvabpWl7SHpL0g/S+IWSVktanLrnvkLSNqV1r0jTFkv6dWo/TVJHaZkza9iHKWnexyU9IOnw0rR7U9ffle1M6GFdJ6b92i+NL0jLPVOqa3Ha/10kzU7di/82De+yGcdn31TfYhVd3/f517la73KI2NbgDeBvJO2RsewKil6DK04ClnSaZ3pEHEjxSoAPA39Zmva1iDgwff681H59WuYw4DxJ5e4qNpH6DPsH4PAoupD/R+Ankv60NNuppe3M7XJFG50C/Cr9JCIOSbX8a6Wu9HmKooeDJyNin4j4YDoeV5bW1dPxuaxyfCLiQ8D3e6jNtjIOEdsarAdmAD3+j78LrwPLJLWl8c8AN1SZd1tge4p3atQkItZSfAO5uy7Hz6IIo9+lZR6i6MJ8aq3bqUidbx5O8c3niT3Muw9wEPCNUvNFQJukD6bxno7PnhTftCbV/ujm1mytzSFiW4sfAqdWLsVspjkUfRINB94Gnu00/UxJiym6p/hNRCwuTft26fLQu3pblbQXRfA80s3296focr1sYWqvuLa0nd27Wdd4ipdi/QZYK+mgbuYdDSyOiLcrDWl4cadtd3d8pgN3S7pNxVsRB2H9ikPEtgpRdHk/m+LNfJtM6mr2TuO3A5+i+J/79V3MX7mc9SfATpLK/8MvX846tdT+GUmPUJyFXB4Rf9yM3elK+XLW2m7mO4XiH33Sz1O2cLvQzfGJiB8BH6LoU+sI4H5J2/XCNq1FOERsa/I9iss4O5Xa1lJ0gggU798GfldeKIo3Vy4CvsrGN/i9SxTdo99O8fbCnlwfxetN/xy4uNP9jc6WUlxWKjuId9+b6VbatyOBK1N3+l8DTk498lbb7oGVBwXSOrah6ERyaaWtp+MTEc9GxMyIGE9xafGAzanbWptDxLYaEbGO4np9+R3g91KcFWybxk+j6Nq8s+8AZ6V1dCn9Y3wYRS+qtda0kKI33DO6me1/A5dULlNJOjDVeXmt20kmANdExN4RMSIihlPcGP9EldragYeB80vN5wMPpWllXR4fSeNUvMOGFJS70wfecWGNM7DnWcxayneA0ysjEXFzui+wSNLbFAHwj50XioglVP+f/5mSPgu8h+LeRvkf929LKv8j3NU7ry8BHpL0rYh4tYttz5M0FPi1pABeBT4bm/+ui1PStspuTO33VVlmMvB9SZVg/G82DeFKjdWOz1HApZIql+u+FsV7VayfcFfwZmaWzZezzMwsmy9nmTWIpPMovqxX9tOImLaZ66m8ua+zsT08uWXW63w5y8zMsvlylpmZZXOImJlZNoeImZllc4iYmVm2/w9AV+xKAQ7O9wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.loc[df[\"pbc\"],\"NUMBER_OF_ATOMS\"].plot(kind=\"hist\",bins=100)\n", "plt.xlabel(\"NUMBER_OF_ATOMS\")\n", "plt.title(\"Periodic\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Distribution of the non-periodic structures by number of atoms" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEXCAYAAABsyHmSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAei0lEQVR4nO3de5xdZX3v8c+XBKSich2RJtGg5qDxWkyBim0VWgiChNODCIJEG009xWqtVQE94kHpweNRFFtpKaQCIhexSipBTFHq6YVLuMgdGbmYRJAx4WZRMPjtH+sZXG73zOyszN57dub7fr32a9b6Pc9a63lmJ/s361lrP0u2iYiIaGKLfjcgIiIGV5JIREQ0liQSERGNJYlERERjSSIREdFYkkhERDSWJBIxYCRdKmlxw23vkfQHZfl4SWdMbutiupnZ7wZE9IOke4CnA7va/s8SeztwlO3X9rFpE7J9wCTt568mYz8xveVMJKazGcB7+t2ITqmS/7MxpeQfZExnnwT+UtJ2rQWSXi3pGkkPl5+vrpVdIeljkv5N0qOSvilpp7EOUur/H0lXS3pE0sWSdqiV7yXp3yU9JOm7kl7bsu1Jkv4NeAx4fom9vZRvIenDku6V9ICksyVtW9v+LaVsnaQPtbTro5K+WFt/Ta0dqyW9dSN/nzENJYnEdLYKuAL4y3qwfMBfApwK7Ah8GrhE0o61am8G3gY8G9iqdR9tHA38MbALsKHsG0mzyrE+DuxQ9vMVSUO1bd8CLAWeCdzbst+3ltfrgOcDzwD+uux7PnBa2f43S19mt2ucpOcBlwKfA4aAVwI3TNCniCSRmPY+AvxZy4f2gcCdts+xvcH2ecDtwBtqdf7B9vds/xS4kOpDdzzn2L65XH/5X8BhkmYARwErbK+w/QvbK6mS2+tr237B9i2lLT9v2e+RwKdt32X7J8BxwOGSZgKHAl+3/R3bj5fj/mKM9r0Z+Gfb59n+ue11tpNEYkJJIjGt2b4Z+DpwbC38m/z6X/z3ArNq6/fXlh+jOgNA0t9K+kl5HV+rs7plX1sCOwHPA95YhpAekvQQ8BqqM5Z227Zqbeu9VDfM7FzKntq2JLB1Y+xnDvD9cY4T0VbuzoqAE4DrgE+V9R9SfbjXPRf4xkQ7sv1O4J1tiua07OvnwI+pPuTPsf2O8XY7TllrW59LNVz2I+A+4MWjBZKeTjWk1c5qYI9xjhPRVs5EYtqzPQxcALy7hFYA/03SmyXNlPQmYD7VGUtTR0maXz7ITwQusv0k8EXgDZL2lzRD0taSXiup7bWLNs4D3itpV0nPAP4KuMD2BuAi4KBywXyrctyx/s+fC/yBpMNKn3eUNNEQXUSSSERxIrANgO11wEHA+6iGfz4AHGT7x5uw/3OAL1ANg21NSVi2VwOLgOOBEaozgvfT+f/NZWXf3wHuBn4G/FnZ9y3AMcCXqM5KHgTWtNuJ7R9QXYd5H7Ce6qL6KzaqhzEtKQ+liuguSVcAX7Sdb4fHZidnIhER0ViSSERENJbhrIiIaCxnIhER0di0+57ITjvt5Llz5/a7GRERA+Xaa6/9se2h1vi0SyJz585l1apV/W5GRMRAkdQ6iwOQ4ayIiNgESSIREdFYkkhERDSWJBIREY0liURERGNJIhER0ViSSERENJYkEhERjSWJREREY9PuG+sR0T1zj73kqeV7Tj6wjy2JXsmZSERENJYkEhERjSWJREREY0kiERHRWJJIREQ0liQSERGNJYlERERjSSIREdFYkkhERDTWtSQiaZmkByTd3KbsfZIsaaeyLkmnShqWdKOk3Wt1F0u6s7wW1+KvknRT2eZUSepWXyIior1unol8AVjYGpQ0B9gP+EEtfAAwr7yWAqeVujsAJwB7AnsAJ0javmxzGvCO2na/dqyIiOiuriUR298B1rcpOgX4AOBabBFwtitXAttJ2gXYH1hpe73tB4GVwMJS9izbV9o2cDZwSLf6EhER7fX0moikRcBa299tKZoFrK6trymx8eJr2sTHOu5SSaskrRoZGdmEHkRERF3PkoikpwPHAx/p1TFH2T7d9gLbC4aGhnp9+IiIzVYvz0ReAOwKfFfSPcBs4DpJzwHWAnNqdWeX2Hjx2W3iERHRQz1LIrZvsv1s23Ntz6Uagtrd9v3AcuDocpfWXsDDtu8DLgP2k7R9uaC+H3BZKXtE0l7lrqyjgYt71ZeIiKh08xbf84D/AHaTtEbSknGqrwDuAoaBvwf+FMD2euBjwDXldWKJUeqcUbb5PnBpN/oRERFj69qTDW0fMUH53NqygWPGqLcMWNYmvgp46aa1MiIiNkW+sR4REY0liURERGNJIhER0ViSSERENJYkEhERjSWJREREY0kiERHRWJJIREQ0liQSERGNJYlERERjSSIREdFYkkhERDSWJBIREY0liURERGNJIhER0ViSSERENJYkEhERjSWJREREY918xvoySQ9IurkW+6Sk2yXdKOmrkrarlR0naVjSHZL2r8UXltiwpGNr8V0lXVXiF0jaqlt9iYiI9rp5JvIFYGFLbCXwUtsvB74HHAcgaT5wOPCSss3nJc2QNAP4G+AAYD5wRKkL8AngFNsvBB4ElnSxLxER0UbXkojt7wDrW2LftL2hrF4JzC7Li4DzbT9u+25gGNijvIZt32X7CeB8YJEkAfsAF5XtzwIO6VZfIiKivX5eE/lj4NKyPAtYXStbU2JjxXcEHqolpNF4RET0UF+SiKQPARuAc3t0vKWSVklaNTIy0otDRkRMCz1PIpLeChwEHGnbJbwWmFOrNrvExoqvA7aTNLMl3pbt020vsL1gaGhoUvoRERE9TiKSFgIfAA62/VitaDlwuKSnSdoVmAdcDVwDzCt3Ym1FdfF9eUk+3wYOLdsvBi7uVT8iIqLSzVt8zwP+A9hN0hpJS4C/Bp4JrJR0g6S/BbB9C3AhcCvwDeAY20+Wax7vAi4DbgMuLHUBPgj8haRhqmskZ3arLxER0d7Mias0Y/uINuExP+htnwSc1Ca+AljRJn4X1d1bERHRJ/nGekRENJYkEhERjSWJREREY0kiERHRWJJIREQ0liQSERGNJYlERERjSSIREdFYkkhERDSWJBIREY0liURERGNJIhER0ViSSERENJYkEhERjSWJREREY0kiERHRWJJIREQ0liQSERGNJYlERERjXUsikpZJekDSzbXYDpJWSrqz/Ny+xCXpVEnDkm6UtHttm8Wl/p2SFtfir5J0U9nmVEnqVl8iIqK9bp6JfAFY2BI7Frjc9jzg8rIOcAAwr7yWAqdBlXSAE4A9gT2AE0YTT6nzjtp2rceKiIgu61oSsf0dYH1LeBFwVlk+CzikFj/blSuB7STtAuwPrLS93vaDwEpgYSl7lu0rbRs4u7aviIjokV5fE9nZ9n1l+X5g57I8C1hdq7emxMaLr2kTb0vSUkmrJK0aGRnZtB5ERMRT+nZhvZxBuEfHOt32AtsLhoaGenHIiIhpoddJ5EdlKIry84ESXwvMqdWbXWLjxWe3iUdERA/1OoksB0bvsFoMXFyLH13u0toLeLgMe10G7Cdp+3JBfT/gslL2iKS9yl1ZR9f2FRERPTKzWzuWdB7wWmAnSWuo7rI6GbhQ0hLgXuCwUn0F8HpgGHgMeBuA7fWSPgZcU+qdaHv0Yv2fUt0B9hvApeUVERE91LUkYvuIMYr2bVPXwDFj7GcZsKxNfBXw0k1pY0REbJp8Yz0iIhrrKIlIelm3GxIREYOn0zORz0u6WtKfStq2qy2KiIiB0VESsf27wJFUt9teK+lLkv6wqy2LiIgpr+NrIrbvBD4MfBD4feBUSbdL+qNuNS4iIqa2Tq+JvFzSKcBtwD7AG2y/uCyf0sX2RUTEFNbpLb6fA84Ajrf909Gg7R9K+nBXWhYREVNep0nkQOCntp8EkLQFsLXtx2yf07XWRUTElNbpNZF/pvpm+Kinl1hERExjnSaRrW3/ZHSlLD+9O02KiIhB0WkS+c+WR9a+CvjpOPUjImIa6PSayJ8DX5b0Q0DAc4A3da1VERExEDpKIravkfQiYLcSusP2z7vXrIiIGAQbM4vvbwNzyza7S8L22V1pVUREDISOkoikc4AXADcAT5awgSSRiIhprNMzkQXA/PLcj4iICKDzu7NuprqYHhER8ZROz0R2Am6VdDXw+GjQ9sFdaVVERAyETpPIR7vZiIiIGEydPk/kX4B7gC3L8jXAdU0PKum9km6RdLOk8yRtLWlXSVdJGpZ0gaStSt2nlfXhUj63tp/jSvwOSfs3bU9ERDTT6VTw7wAuAv6uhGYBX2tyQEmzgHcDC2y/FJgBHA58AjjF9guBB4ElZZMlwIMlfkqph6T5ZbuXAAupnr44o0mbIiKimU4vrB8D7A08Ak89oOrZm3DcmcBvSJpJNQfXfVTPJrmolJ8FHFKWF5V1Svm+klTi59t+3PbdwDCwxya0KSIiNlKnSeRx20+MrpQP/0a3+9peC/w/4AdUyeNh4FrgIdsbSrU1VGc7lJ+ry7YbSv0d6/E22/wKSUslrZK0amRkpEmzIyKijU6TyL9IOp7q7OEPgS8D/9TkgJK2pzqL2BX4TWAbquGorrF9uu0FthcMDQ1181AREdNKp0nkWGAEuAn4E2AF1fPWm/gD4G7bI2X+rX+kGirbrpzhAMwG1pbltcAceOoMaFtgXT3eZpuIiOiBTu/O+oXtv7f9RtuHluWm317/AbCXpKeXaxv7ArcC3wYOLXUWAxeX5eVlnVL+rXLs5cDh5e6tXYF5wNUN2xQREQ10OnfW3bS5BmL7+Rt7QNtXSbqI6hbhDcD1wOnAJcD5kj5eYmeWTc4EzpE0DKynuiML27dIupAqAW0Ajhl9fG9ERPTGxsydNWpr4I3ADk0PavsE4ISW8F20ubvK9s/K8drt5yTgpKbtiIiITdPpcNa62mut7c8AB3a5bRERMcV1Opy1e211C6ozk415FklERGyGOk0En6otb6CaAuWwSW9NREQMlE4fj/u6bjckIiIGT6fDWX8xXrntT09OcyIiYpBszN1Zv0313QyAN1B9J+PObjQqIiIGQ6dJZDawu+1HASR9FLjE9lHdalhEREx9nU57sjPwRG39iRKLiIhprNMzkbOBqyV9tawfwi+nZ4+IiGmq07uzTpJ0KfC7JfQ229d3r1kRETEIOh3OgurhUY/Y/iywpkx6GBER01inj8c9AfggcFwJbQl8sVuNioiIwdDpmch/Bw4G/hPA9g+BZ3arURERMRg6TSJPlGd4GEDSNt1rUkREDIpOk8iFkv6O6umD7wD+Gfj77jUrIiIGwYR3Z5WnD14AvAh4BNgN+IjtlV1uW0RETHETJhHblrTC9suAJI6IiHhKp8NZ10n67a62JCIiBk6n31jfEzhK0j1Ud2iJ6iTl5d1qWERETH3jnolIem5Z3B94PrAP1Qy+B5WfjUjaTtJFkm6XdJuk35G0g6SVku4sP7cvdSXpVEnDkm6sP2VR0uJS/05Ji5u2JyIimploOOtrALbvBT5t+976axOO+1ngG7ZfBLwCuA04Frjc9jzg8rIOcAAwr7yWAqcBSNoBOIHqLGkP4ITRxBMREb0xURJRbfn5k3FASdsCvwecCWD7CdsPAYv45aSOZ1FN8kiJn+3KlVS3Ge9CdXa00vZ62w9SXfRfOBltjIiIzkyURDzG8qbYFRgB/kHS9ZLOKF9e3Nn2faXO/fxyqvlZwOra9mtKbKz4r5G0VNIqSatGRkYmqRsRETFREnmFpEckPQq8vCw/IulRSY80POZMYHfgNNu/RXWh/th6hfq34yeD7dNtL7C9YGhoaLJ2GxEx7Y2bRGzPsP0s28+0PbMsj64/q+Ex1wBrbF9V1i+iSio/KsNUlJ8PlPK1wJza9rNLbKx4RET0yMZMBT8pbN8PrJa0WwntC9xK9fz20TusFgMXl+XlwNHlLq29gIfLsNdlwH6Sti8X1PcrsYiI6JFOvycy2f4MOFfSVsBdwNuoEtqFkpYA9wKHlborgNcDw8BjpS6210v6GHBNqXei7fW960JERPQlidi+AVjQpmjfNnUNHDPGfpYByya3dRER0ameD2dFRMTmI0kkIiIaSxKJiIjGkkQiIqKxft2dFRERXTb32EueWr7n5AO7coyciURERGNJIhER0ViSSERENJYkEhERjSWJREREY0kiERHRWJJIREQ0liQSERGNJYlERERjSSIREdFYkkhERDSWJBIREY0liURERGN9SyKSZki6XtLXy/qukq6SNCzpgvL8dSQ9rawPl/K5tX0cV+J3SNq/Pz2JiJi++nkm8h7gttr6J4BTbL8QeBBYUuJLgAdL/JRSD0nzgcOBlwALgc9LmtGjtkdEBH1KIpJmAwcCZ5R1AfsAF5UqZwGHlOVFZZ1Svm+pvwg43/bjtu8GhoE9etODiIiA/p2JfAb4APCLsr4j8JDtDWV9DTCrLM8CVgOU8odL/afibbb5FZKWSloladXIyMhk9iMiYlrreRKRdBDwgO1re3VM26fbXmB7wdDQUK8OGxGx2evH43H3Bg6W9Hpga+BZwGeB7STNLGcbs4G1pf5aYA6wRtJMYFtgXS0+qr5NRET0QM/PRGwfZ3u27blUF8a/ZftI4NvAoaXaYuDisry8rFPKv2XbJX54uXtrV2AecHWPuhEREfTnTGQsHwTOl/Rx4HrgzBI/EzhH0jCwnirxYPsWSRcCtwIbgGNsP9n7ZkdETF99TSK2rwCuKMt30ebuKts/A944xvYnASd1r4URETGefGM9IiIaSxKJiIjGkkQiIqKxJJGIiGgsSSQiIhpLEomIiMaSRCIiorEkkYiIaCxJJCIiGptK055EbJS5x17y1PI9Jx/Yx5ZETF85E4mIiMaSRCIiorEkkYiIaCxJJCIiGksSiYiIxpJEIiKisSSRiIhoLEkkIiIaSxKJiIjGep5EJM2R9G1Jt0q6RdJ7SnwHSSsl3Vl+bl/iknSqpGFJN0ravbavxaX+nZIW97ovERHTXT/ORDYA77M9H9gLOEbSfOBY4HLb84DLyzrAAcC88loKnAZV0gFOAPYE9gBOGE08ERHRGz1PIrbvs31dWX4UuA2YBSwCzirVzgIOKcuLgLNduRLYTtIuwP7AStvrbT8IrAQW9rArERHTXl+viUiaC/wWcBWws+37StH9wM5leRawurbZmhIbK97uOEslrZK0amRkZNLaHxEx3fUtiUh6BvAV4M9tP1Ivs23Ak3Us26fbXmB7wdDQ0GTtNiJi2utLEpG0JVUCOdf2P5bwj8owFeXnAyW+FphT23x2iY0Vj4iIHunH3VkCzgRus/3pWtFyYPQOq8XAxbX40eUurb2Ah8uw12XAfpK2LxfU9yuxiIjokX48lGpv4C3ATZJuKLHjgZOBCyUtAe4FDitlK4DXA8PAY8DbAGyvl/Qx4JpS70Tb63vThYiIgD4kEdv/CmiM4n3b1DdwzBj7WgYsm7zWRUTExsg31iMiorEkkYiIaCxJJCIiGksSiYiIxpJEIiKisSSRiIhoLEkkIiIaSxKJiIjGkkQiIqKxJJGIiGgsSSQiIhpLEomIiMaSRCIiorEkkYiIaCxJJCIiGksSiYiIxpJEIiKisX48HndgzT32kqeW7zn5wD62JCJiasiZSERENDbwSUTSQkl3SBqWdGy/2xMRMZ0MdBKRNAP4G+AAYD5whKT5/W1VRMT0MdBJBNgDGLZ9l+0ngPOBRX1uU0TEtCHb/W5DY5IOBRbafntZfwuwp+13tdRbCiwtq7sBdzQ85E7AjxtuO9VsLn3ZXPoB6ctUtbn0ZVP78TzbQ63BaXF3lu3TgdM3dT+SVtleMAlN6rvNpS+bSz8gfZmqNpe+dKsfgz6ctRaYU1ufXWIREdEDg55ErgHmSdpV0lbA4cDyPrcpImLaGOjhLNsbJL0LuAyYASyzfUsXD7nJQ2JTyObSl82lH5C+TFWbS1+60o+BvrAeERH9NejDWRER0UdJIhER0ViSSAtJcyR9W9Ktkm6R9J42dSTp1DLVyo2Sdu9HW8fTYT9eK+lhSTeU10f60daJSNpa0tWSvlv68r/b1HmapAvKe3KVpLm9b+nEOuzLWyWN1N6Xt/ejrZ2QNEPS9ZK+3qZsIN6TURP0ZZDek3sk3VTauapN+aR+fg30hfUu2QC8z/Z1kp4JXCtppe1ba3UOAOaV157AaeXnVNJJPwD+v+2D+tC+jfE4sI/tn0jaEvhXSZfavrJWZwnwoO0XSjoc+ATwpn40dgKd9AXggtYvzU5R7wFuA57VpmxQ3pNR4/UFBuc9AXid7bG+WDipn185E2lh+z7b15XlR6n+Uc1qqbYIONuVK4HtJO3S46aOq8N+DITye/5JWd2yvFrvCFkEnFWWLwL2laQeNbFjHfZlIEiaDRwInDFGlYF4T6CjvmxOJvXzK0lkHOX0+7eAq1qKZgGra+trmMIf0OP0A+B3ytDKpZJe0tOGbYQy1HAD8ACw0vaY74ntDcDDwI69bWVnOugLwP8oQw0XSZrTpnwq+AzwAeAXY5QPzHvCxH2BwXhPoPqj5JuSri1TPrWa1M+vJJExSHoG8BXgz20/0u/2NDVBP66jmg/nFcDngK/1un2dsv2k7VdSzUqwh6SX9rtNTXXQl38C5tp+ObCSX/41P2VIOgh4wPa1/W7LpuqwL1P+Pal5je3dqYatjpH0e908WJJIG2Ws+ivAubb/sU2VgZhuZaJ+2H5kdGjF9gpgS0k79biZG8X2Q8C3gYUtRU+9J5JmAtsC63rbuo0zVl9sr7P9eFk9A3hVr9vWgb2BgyXdQzV79j6SvthSZ1Dekwn7MiDvCQC215afDwBfpZrtvG5SP7+SRFqUMdszgdtsf3qMasuBo8tdDnsBD9u+r2eN7EAn/ZD0nNExakl7UP17mHL/ySUNSdquLP8G8IfA7S3VlgOLy/KhwLc8Bb9J20lfWsanD6a6njWl2D7O9mzbc6mmG/qW7aNaqg3Ee9JJXwbhPQGQtE25kQZJ2wD7ATe3VJvUz6/cnfXr9gbeAtxUxq0BjgeeC2D7b4EVwOuBYeAx4G19aOdEOunHocD/lLQB+Clw+FT8Tw7sApyl6iFkWwAX2v66pBOBVbaXUyXMcyQNA+upPgymok768m5JB1PdYbceeGvfWruRBvQ9aWtA35Odga+Wvw1nAl+y/Q1J74TufH5l2pOIiGgsw1kREdFYkkhERDSWJBIREY0liURERGNJIhER0ViSSERENJYkEgNPkiV9qrb+l5I+Wpa/IOnQlvo/KT/nlm0/XivbSdLPJf11Wf+opLVlWu3bJZ0maYvavu/WL6cH//cSr08bfruk93bQh6Wl7u2qpop/Ta3sCkl31I5z6AT7OqT060Vl/aqy3Q/0q9OZz5W0raSzVU0L/v2yvO1G/H52K+27QdJtkjaXR8lGh5JEYnPwOPBHDadsuZtq9tZRbwRuaalzSpnraj7wMuD3a2Xvt/3K8np1LX5B2WZv4EMaZ8K+MnfTn1DNefQi4J3AlyQ9p1btyNpxLpqgT0cA/1p+YnvP0paPjLarvO6h+kLgXbZfaPsF5fdRn8l2ot/PqaO/H9svppqDLaaRJJHYHGwATgcm/Iu/jceA2yQtKOtvAi4co+5WwNbAg53u3PY6qm8GjzfV9gepktGPyzbXUU3wd0ynxxmlasLN11A9y2Pcb4hLeiHVHFAfq4VPBBZIekFZn+j3swvVLLCUtt+0sW2OwZYkEpuLvwGOHB2K2UjnA4eXs4UngR+2lL+3TB1zH/A92zfUyj5ZGx46t3XHkp5LlXhuHOf4LwFaZ5BdVeKjzq0dZ7zp1BcB37D9PWCdpPEmCpwP3GD7ydFAWb6h5djj/X5OAb6l6lEC7x2dFyymjySR2CyUae7PBt7dWtSuesv6N6gmQjwcuKBN/dHhrGcD26h6St+o+nDWkbX4myTdSHUW8nnbP9uI7rRTH84ab5LMI6g+9Ck/j9jE48I4vx/b/wC8GPgy8FrgSklPm4RjxoBIEonNyWeohnG2qcXWAduPrkjaAfiVx4bafoLqTOB9VE/ga8v2z6k+UDt5PsMF5dkTrwZObrm+0epWfn1q8Vfx69dmxlX6tg9whqppzd8PHCaN+TTBW4FXjt4oUPaxBfDKUgZM/Pux/UPby2wvohpaHNhnvcTGSxKJzYbt9VTj9Utq4Suozgq2KutvpXqGR6tPAR8s+2irfBjvDXx/I9q0CjiH6vndY/m/wCdGh6kkvbK08/OdHqc4FDjH9vNsz7U9h+rC+O+O0bZh4Hrgw7Xwh4HrSlld29+PpIWqnltDSZQ7MgWfrRPdk6ngY3PzKeBdoytlmvVXAddKepIqAbyzdSPbtzD2X/7vlXQU1fPQb+RXP9w/Kan+Idz6ACCATwDXSforV8+7bz32ckmzgH+XZOBR4KgGz3g4ohyr7isl/p0xtlkCfE7SaGL8D341CY+2cazfz37AZyWNDte93/b9G9nuGGCZCj4iIhrLcFZERDSW4ayIHpH0Iaov69V92fZJG7mfHYHL2xTtO8GdWxGTLsNZERHRWIazIiKisSSRiIhoLEkkIiIaSxKJiIjG/gtkhW6xhyDbLAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.loc[~df[\"pbc\"],\"NUMBER_OF_ATOMS\"].plot(kind=\"hist\",bins=100)\n", "plt.xlabel(\"NUMBER_OF_ATOMS\")\n", "plt.title(\"Non-periodic\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Distribution of the periodic structures by energy per atom" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEXCAYAAABcRGizAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAblElEQVR4nO3df7xldV3v8debH4qoKchIyK+BGksqRRrRUm+axi8ztOvPCpC80g8oLbtXQG9w6dJD66ZmKklGoilqEUo6igOp9OMiDIQgoJcJB2EcgQAFfwQBn/vH+h7dDuectc/M2T/OnNfz8diPWeu7v3utz15z9nrv9WOvlapCkqT5bDfpAiRJ08+wkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIspBFK8okkx2zhazckeW4bPjnJuxe3Oml4O0y6AGkaJdkA7A7cD3wL+ARwQlV9cyHTqarDF6OeqvrDxZiOtKXcspDm9vyqegRwELAaeMOwL0zHz5e2Gf4xSz2qaiPdlsWPJ3lakn9J8vUkn0/yrJl+ST6T5PQk/wx8G9i/tf239vx2Sd6Q5MYktyZ5b5JHDbz+qPbc7UleP1hDklOT/PXA+DMG6rgpyStGuxS03BkWUo8kewNHAJuAjwP/G9gV+D3g3CQrBrofBRwHPBK4cbNJvaI9ng3sDzwCeHubxwHAGe31jwMeA+w1Rz370oXXnwErgAOBK7fqTUo9DAtpbh9J8nXgn4DPAjcDa6pqTVU9UFVrgXV0QTLjPVV1TVXdV1X/udn0fhl4c1Xd0I59nAS8LMkOwIuAj1XVxVV1D/A/gQfmqOuXgAur6pyq+s+qur2qDAuNlGEhze0FVfXoqtq3qn6T7oD3i9uun6+3IHkGsMfAa26aZ3qP4/u3Nm6kO8lk9/bcd19bVd8Cbp9jOnsD/7bgdyNtBc+GkoZ3E/C+qnrVPH3mu4zzV4F9B8b3Ae4DbqHbxfWEmSeS7Ey3K2quOg4epmBpsbhlIQ3vr4HnJzk0yfZJdkryrCSzHluYxTnA7yTZL8kjgD8EPlRV9wF/C/x8O3D9EOA05v58vh94bpKXJNkhyWOSHLiV702al2EhDamqbgKOBE4GbqP7hv/fGf5zdBbwPuBi4MvAfwC/1aZ9DXA88AG6rYw76Y6RzFbHV+iOk7wWuIPu4PaTtuQ9ScOKNz+SJPVxy0KS1MuwkCT1MiwkSb0MC0lSr23ydxa77bZbrVy5ctJlSNKScvnll/97Va2Y7bltMixWrlzJunXrJl2GJC0pSTa/ntl3uRtKktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1Gub/AW3JC0nK0/8+HeHN7zxeSOZh1sWkqReIwuLJHsn+XSSa5Nck+TVrf3UJBuTXNkeRwy85qQk65N8KcmhA+2Htbb1SU4cVc2SpNmNcjfUfcBrq+qKJI8ELk+ytj33lqr6P4OdkxwAvAz4MeBxwIVJHt+efgfwc3T3JL4syflVde0Ia5ckDRhZWFTVJrobz1NVdye5DthznpccCXywqu4BvpxkPXBwe259Vd0AkOSDra9hIUljMpZjFklWAk8GPteaTkhyVZKzkuzS2vYEbhp42c2tba72zedxXJJ1Sdbddttti/wOJGl5G3lYJHkEcC7wmqq6CzgD+CHgQLotjz9ZjPlU1ZlVtbqqVq9YMeu9OyRJW2ikp84m2ZEuKN5fVX8HUFW3DDz/F8DH2uhGYO+Bl+/V2pinXZI0BqM8GyrAXwLXVdWbB9r3GOj2QuALbfh84GVJHppkP2AVcClwGbAqyX5JHkJ3EPz8UdUtSXqwUW5ZPB04Crg6yZWt7WTg5UkOBArYAPwaQFVdk+TDdAeu7wOOr6r7AZKcAFwAbA+cVVXXjLBuSdJmRnk21D8BmeWpNfO85nTg9Fna18z3OknSaPkLbklSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUaWVgk2TvJp5Ncm+SaJK9u7bsmWZvk+vbvLq09Sd6WZH2Sq5IcNDCtY1r/65McM6qaJUmzG+WWxX3Aa6vqAOBpwPFJDgBOBC6qqlXARW0c4HBgVXscB5wBXbgApwBPBQ4GTpkJGEnSeIwsLKpqU1Vd0YbvBq4D9gSOBM5u3c4GXtCGjwTeW51LgEcn2QM4FFhbVXdU1Z3AWuCwUdUtSXqwsRyzSLISeDLwOWD3qtrUnvoasHsb3hO4aeBlN7e2udo3n8dxSdYlWXfbbbctav2StNyNPCySPAI4F3hNVd01+FxVFVCLMZ+qOrOqVlfV6hUrVizGJCVJzUjDIsmOdEHx/qr6u9Z8S9u9RPv31ta+Edh74OV7tba52iVJYzLKs6EC/CVwXVW9eeCp84GZM5qOAT460H50OyvqacA32u6qC4BDkuzSDmwf0tokSWOywwin/XTgKODqJFe2tpOBNwIfTvJK4EbgJe25NcARwHrg28CxAFV1R5I/AC5r/U6rqjtGWLckaTMjC4uq+icgczz9nFn6F3D8HNM6Czhr8aqTJC2Ev+CWJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUa6iwSPIToy5EkjS9ht2yeGeSS5P8ZpJHjbQiSdLUGSosquqZwC8DewOXJ/lAkp8baWWSpKkx9DGLqroeeAPwOuBngLcl+WKSXxxVcZKk6TDsMYsnJnkLcB3ws8Dzq+oJbfgtI6xPkjQFdhiy358B7wZOrqrvzDRW1VeTvGEklUmSpsawYfE84DtVdT9Aku2Anarq21X1vpFVJ0maCsMes7gQeNjA+M6tbU5Jzkpya5IvDLSdmmRjkivb44iB505Ksj7Jl5IcOtB+WGtbn+TEIeuVJC2iYcNip6r65sxIG9655zXvAQ6bpf0tVXVge6wBSHIA8DLgx9pr3plk+yTbA+8ADgcOAF7e+kqSxmjYsPhWkoNmRpL8JPCdefpTVRcDdww5/SOBD1bVPVX1ZWA9cHB7rK+qG6rqXuCDra8kaYyGPWbxGuBvknwVCPCDwEu3cJ4nJDkaWAe8tqruBPYELhnoc3NrA7hps/anbuF8JUlbaNgf5V0G/CjwG8CvA0+oqsu3YH5nAD8EHAhsAv5kC6YxqyTHJVmXZN1tt922WJOVJDH8lgXAU4CV7TUHJaGq3ruQmVXVLTPDSf4C+Fgb3Uj36/AZe7U25mnffNpnAmcCrF69uhZSlyRpfkOFRZL30W0RXAnc35oLWFBYJNmjqja10RcCM2dKnQ98IMmbgccBq4BL6XZ5rUqyH11IvAz4pYXMU5K09YbdslgNHFBVQ39jT3IO8CxgtyQ3A6cAz0pyIF3QbAB+DaCqrknyYeBa4D7g+IHfdJwAXABsD5xVVdcMW4MkaXEMGxZfoDuovamv44yqevkszX85T//TgdNnaV8DrBl2vpKkxTdsWOwGXJvkUuCemcaq+oWRVCVJmirDhsWpoyxCkjTdhgqLqvpskn2BVVV1YZKd6Y4hSJKWgWEvUf4q4G+Bd7WmPYGPjKooSdJ0GfZyH8cDTwfugu/eCOmxoypKkjRdhg2Le9q1mQBIsgPd6a+SpGVg2LD4bJKTgYe1e2//DfD3oytLkjRNhg2LE4HbgKvpfki3hu5+3JKkZWDYs6EeAP6iPSRJy8yw14b6MrMco6iq/Re9IknS1FnItaFm7AS8GNh18cuRJE2jYe9ncfvAY2NVvRV43ohrkyRNiWF3Qx00MLod3ZbGQu6FIUlawoZd4Q/e0e4+usuLv2TRq5EkTaVhz4Z69qgLkSRNr2F3Q/3ufM9X1ZsXpxxJ0jRayNlQT6G7/SnA8+lue3r9KIqSJE2XYcNiL+CgqrobIMmpwMer6ldGVZgkaXoMe7mP3YF7B8bvbW2SpGVg2C2L9wKXJjmvjb8AOHs0JUmSps2wZ0OdnuQTwDNb07FV9a+jK0uSNE2G3Q0FsDNwV1X9KXBzkv1GVJMkacoMe1vVU4DXASe1ph2Bvx5VUZKk6TLslsULgV8AvgVQVV8FHjmqoiRJ02XYsLi3qop2mfIkDx9dSZKkaTNsWHw4ybuARyd5FXAh3ghJkpaN3rOhkgT4EPCjwF3AjwC/X1VrR1ybJGlK9IZFVVWSNVX1E4ABIUnL0LC7oa5I8pSRViJJmlrD/oL7qcCvJNlAd0ZU6DY6njiqwiRJ02PesEiyT1V9BTh0TPVIkqZQ35bFR+iuNntjknOr6r+OoyhJ0nTpO2aRgeH9FzLhJGcluTXJFwbadk2yNsn17d9dWnuSvC3J+iRXDd7zO8kxrf/1SY5ZSA2SpMXRFxY1x/Aw3gMctlnbicBFVbUKuKiNAxwOrGqP44AzoAsX4BS6YyYHA6fMBIwkaXz6wuJJSe5KcjfwxDZ8V5K7k9w13wur6mLgjs2aj+R7lzY/m+5S5zPt763OJXQ//tuD7ljJ2qq6o6rupDt1d/MAkiSN2LzHLKpq+0We3+5VtakNf43v3UBpT+CmgX43t7a52h8kyXF0WyXss88+i1iyJGkhlyhfVIPXmlqk6Z1ZVauravWKFSsWa7KSJMYfFre03Uu0f29t7RuBvQf67dXa5mqXJI3RuMPifGDmjKZjgI8OtB/dzop6GvCNtrvqAuCQJLu0A9uHtDZJ0hgN+wvuBUtyDvAsYLckN9Od1fRGuivYvhK4EXhJ674GOAJYD3wbOBagqu5I8gfAZa3faVW1+UFzSdKIjSwsqurlczz1nFn6FnD8HNM5CzhrEUuTJC3QxA5wS5KWDsNCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9RrZ/SwkSaOz8sSPj3V+bllIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF6GhSSpl2EhSeplWEiSehkWkqRehoUkqZdhIUnqZVhIknoZFpKkXoaFJKnXRMIiyYYkVye5Msm61rZrkrVJrm//7tLak+RtSdYnuSrJQZOoWZKWs0luWTy7qg6sqtVt/ETgoqpaBVzUxgEOB1a1x3HAGWOvVJKWuWnaDXUkcHYbPht4wUD7e6tzCfDoJHtMokBJWq4mdVvVAj6VpIB3VdWZwO5Vtak9/zVg9za8J3DTwGtvbm2bBtpIchzdlgf77LPPCEuXpPEZvH3qhjc+b2J1TCosnlFVG5M8Flib5IuDT1ZVtSAZWgucMwFWr169oNdKkuY3kd1QVbWx/XsrcB5wMHDLzO6l9u+trftGYO+Bl+/V2iRJYzL2sEjy8CSPnBkGDgG+AJwPHNO6HQN8tA2fDxzdzop6GvCNgd1VkqQxmMRuqN2B85LMzP8DVfXJJJcBH07ySuBG4CWt/xrgCGA98G3g2PGX/GDTsh9RksZh7GFRVTcAT5ql/XbgObO0F3D8GErrNRgQkrScTOoAtyRpDtP4xdSwmIW7mCTp+xkWkjQFpnFrYtA0/YJbkjSl3LLoMUzau9tK0paY9q2JQYbFFDF0JM1nkuFiWIyQK39J2wrDYkwMDklLmWGxyJbSPkhJ47EtfFk0LCRpjJbqF0rDYgKW6h+LpOXL31lIknq5ZbHEbAv7PqXlYFvbg2BYTKlt7Q9N2lYtly9whsUStlz+SMfN5So9mGGxjZhrS2RrV3auOLWt8G956xgW27hRfUC2Zrp+aLXY5vqbmutL1Di+XG1rDAsNbVv+IMxlmoNtmmvb3EJrXejKf5ymoYZJMCyWkWlcuSzWSmRaTHt9i2Wc73O5rpynjWGhrTaqTfqFzHdr5jWqldEw011oQG6NhU5n89oW63L9S2WrYdpqmzTDQmOx0BXNoGn5hj6KFcYo3vO4t26mbUU6qXDd1hkWy9TmH4RpWSFremztynJrviBo+hgWAqb7Q7tYK51tORCn+f9P2wbDQsvStK9c3ZWiaWNYaGSmbUU1bfVIS4lXnZUk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVKvJRMWSQ5L8qUk65OcOOl6JGk5WRJhkWR74B3A4cABwMuTHDDZqiRp+VgSYQEcDKyvqhuq6l7gg8CRE65JkpaNpXK5jz2BmwbGbwaeOtghyXHAcW30m0m+NKbaZrMb8O8TnP8wrHHxLIU6rXFxTH2NedNW1bjvXE8slbDoVVVnAmdOug6AJOuqavWk65iPNS6epVCnNS6O5VzjUtkNtRHYe2B8r9YmSRqDpRIWlwGrkuyX5CHAy4DzJ1yTJC0bS2I3VFXdl+QE4AJge+CsqrpmwmXNZyp2h/WwxsWzFOq0xsWxbGtMVY1iupKkbchS2Q0lSZogw0KS1MuwWARJ/iDJVUmuTPKpJI+bo9/9rc+VScZ6gH4BNR6T5Pr2OGbMNf5xki+2Os9L8ug5+m1IcnV7L+umtMaJXp4myYuTXJPkgSRznkY54WU5bI0TW5ZJdk2ytn0e1ibZZY5+Y/9s9y2XJA9N8qH2/OeSrNyqGVaVj618AD8wMPzbwJ/P0e+b01wjsCtwQ/t3lza8yxhrPATYoQ2/CXjTHP02ALtNaDn21kh3Esa/AfsDDwE+Dxww5jqfAPwI8Blg9Tz9Jrkse2uc9LIE/gg4sQ2fOM/f5Fg/28MsF+A3Zz7ndGeQfmhr5umWxSKoqrsGRh8OTN1ZA0PWeCiwtqruqKo7gbXAYeOoD6CqPlVV97XRS+h+TzNVhqxx4penqarrqmqSVzHoNWSNk16WRwJnt+GzgReMcd7zGWa5DNb+t8BzkmRLZ2hYLJIkpye5Cfhl4Pfn6LZTknVJLkky9j+6IWqc7bIqe46jtln8KvCJOZ4r4FNJLm+XeZmUuWqcpuXYZ1qW5VwmvSx3r6pNbfhrwO5z9Bv3Z3uY5fLdPu0LzjeAx2zpDJfE7yymQZILgR+c5anXV9VHq+r1wOuTnAScAJwyS999q2pjkv2Bf0hydVX925TVOFJ9NbY+rwfuA94/x2Se0ZbjY4G1Sb5YVRdPWY0jN0ydQ5j4spy0+WocHKmqSjLXXoORfrangWExpKp67pBd3w+sYZYVcVVtbP/ekOQzwJPp9jtOS40bgWcNjO9Ftz950fTVmOQVwM8Dz6m2s3WWacwsx1uTnEe3Sb5oK7hFqHEsl6dZwP/3fNOY6LIcwsiX5Xw1JrklyR5VtSnJHsCtc0xjpJ/tWQyzXGb63JxkB+BRwO1bOkN3Qy2CJKsGRo8EvjhLn12SPLQN7wY8Hbh2PBUOVyPdL+QPabXuQncw94Jx1Afd2R3A/wB+oaq+PUefhyd55Mxwq/EL01QjS+TyNJNelkOa9LI8H5g5K/AY4EFbQxP6bA+zXAZrfxHwD3N9ARvKOI/gb6sP4Fy6D9lVwN8De7b21cC72/BPA1fTnbVwNfDKaauxjf8qsL49jh1zjevp9rFe2R4zZ3I8DljThvdvy/DzwDV0uzOmqsY2fgTw/+i+XY61xjb/F9Ltx74HuAW4YAqXZW+Nk16WdPv4LwKuBy4Edm3tE/9sz7ZcgNPovsgA7AT8TfubvRTYf2vm5+U+JEm93A0lSeplWEiSehkWkqRehoUkqZdhIUnqZVhIknoZFtIEJFmZ5Je24HXvSfKiUdS0UFv6HrQ0GRZactqlC6aqhi2oaSUwVSvabeE9aHQMC41ckl9Jcmm7Mcy7kmyf5JvtKrifb1fq3L31XZHk3CSXtcfTW/upSd6X5J+B97V+a9vNc96d5MYkuyU5LclrBuZ9epJXz1Pb69Ld/OfzSd7Y2g5sNc3c4GiX1v6ZJG9Nd5OgV88y/pNJPtuu4HpBu5YQSX44yYVtHlck+SHgjcAz2zL5nbZM/ri956uS/Fp7bZK8Pd1Nbi4EHtuzrDck+aP2ni5N8sMLWa5zTHNlkn9stV+R5KfbU5u/h52S/FWb978meXZ7/SuSfKT9f21IckKS3219Lkmy63zvSVNinD+d97H8HnQ3uPl7YMc2/k7gaLpLYz+/tf0R8IY2/AG6K6EC7ANc14ZPBS4HHtbG3w6c1IYPa9Pbje7b7hWtfTu6SyE8Zo7aDgf+Bdi5jc9cyuEq4Gfa8GnAW9vwZ4B3Drz+u+PAjm1aK9r4S4Gz2vDngBe24Z2Aneku2PixgWkdN7AMHgqsA/YDfpHuviLb010G4+vAi+ZZ3hv43qUfjp6Zx7DLdY5p7gzs1IZXAeva8Obv4bUD7/lHga+09/sKuktOPBJYQXep7F9v/d4CvGbSf6c++h8T35zXNu85wE8Cl6W778rD6K7ceS/wsdbncuDn2vBzgQPyvXu0/ECSR7Th86vqO234GXTXFqKqPpnkzja8IcntSZ5Md++Bf62qua60+Vzgr6pdELCq7kjyKODRVfXZ1udsuuvrzPjQZtOYGf8R4MfpLvMN3cp9U7oL9e1ZVee1efwHQB58D5pDgCcOHI94FN2K+b8A51TV/cBXk/zDHO9l0DkD/75l4L0Os1xnsyPw9iQHAvcDj5+j3zOAPwOoqi8muXGg76er6m7g7iTfoPsCAd21lJ44xHvShBkWGrUAZ1fVSd/XmPxeta+WdCugmb/F7YCnzaxUB/oDfGvIeb6b7tvsDwJnbVnZc9q8hpnxANdU1U8NPtnCYhgBfquqvu8qv0mO2IIaa5bhrVmuv0N3ob8nten8x/zdZ3XPwPADA+MP4HpoSfCYhUbtIuBF6W6uQ5Jdk+w7T/9PAb81M9K+zc7mn4GXtD6H0N0zfMZ5dLumnsL8l1hfCxybZOeZ2qrqG8CdSZ7Z+hwFfHauCQz4ErAiyU+1ae2Y5Mfat+mb0+6eluShbX530+2WmXEB8BtJdmz9Hp/usuEXAy9txzT2AJ49RC0vHfj3/7bhYZfrbB4FbKqqB+iWx/atffP38I90d2EkyePpdndN9a1dNTwTXSNVVdcmeQPdrTu3A/4TOH6el/w28I4kV9H9fV4M/Pos/f4XcE6So+hWiF+jW3lRVfcm+TTw9bb7Zq7aPtlWmuuS3Et3Q6iT6e4B8OdtpX4DcOwQ7/PetgvpbW1X1g7AW+ku/X0U8K4kp7X3/2K64yL3J/k88B7gT2nHW9J93b+N7n7P5wE/S3d/hK/wvZX/fHZpy+8e4OWtbdjlOpt3AucmORr4JN/bEtn8PbwTOCPJ1XR3EXxFVd0zyy43LUFeolxLUrqbzdxfVfe1b/NnVNWB7bntgCuAF1fV9ZOsc9ySbABWV9W/T7oWbVvcstBStQ/w4RYM9wKvAkhyAN2B8/OWW1BIo+SWhbZ5SX6CB/+G4J6qeuok6lkM6e6Xvd9mza/b/AD5Aqd5KPCmzZq/XFUv3NJpatthWEiSenk2lCSpl2EhSeplWEiSehkWkqRe/x8Zk6raGk0alAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.loc[df[\"pbc\"],\"energy_corrected_per_atom\"].plot(kind=\"hist\",bins=100)\n", "plt.xlabel(\"energy_corrected_per_atom\")\n", "plt.title(\"Periodic\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Distribution of the non-periodic structures by energy per atom" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEXCAYAAABCjVgAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdU0lEQVR4nO3deZgc1Xnv8e8PCRACDBYSstCCIGAcEptNxhjwvWDwwip8wxYbEJhYcYIdvHCDwL42F4dccB6zeAGssAlhswSsoIAMiD3XAYMks2OMAMmSEEhsAoyRkHjzR50pFe2emZ5RV3fNzO/zPP101aml367pqbfPqepzFBGYmZkBrNfuAMzMrDqcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZtJOmXkib1ctsFkvZP06dLuqS50dlANLjdAZitK0kLgKHANhHxh1T2N8AxEbFPG0PrVkQc0KT9/HMz9mPmmoL1F4OAk9sdRKOU8f+fVY4/lNZf/AtwiqTNaxdI2lPSg5JWpOc9C8vulvQ9Sb+S9Iak2yQN7+xF0vr/T9IDkl6XdKOkYYXle0j6L0mvSXpY0j41254l6VfAW8C2qexv0vL1JH1b0kJJyyRdKWmzwvbHpmUvS/pWTVxnSLqqML93IY5Fko7v4fG0AcpJwfqLOcDdwCnFwnTCvhn4IbAFcC5ws6QtCqt9HjgB2BLYoHYfdRwHfBEYBaxO+0bS6PRa/wQMS/u5QdKIwrbHApOBTYGFNfs9Pj32BbYFNgF+nPa9I3BR2n6r9F7G1AtO0tbAL4EfASOAnYGHunlPZoCTgvUv3wG+WnMSPgh4OiKmR8TqiLga+C1wSGGdyyPidxHxR+A6spNoV6ZHxGPp+sX/AY6UNAg4BpgVEbMi4t2ImE2WrA4sbHtFRDyeYnmnZr9fAM6NiGcj4k3gNOBoSYOBw4GbIuLeiFiZXvfdTuL7PHB7RFwdEe9ExMsR4aRgDXFSsH4jIh4DbgKmFIq34k+/kS8ERhfmXyhMv0X2DR1JF0t6Mz1OL6yzqGZf6wPDga2BI1KTzWuSXgP2JqtR1Nu2Vm2sC8luBhmZluXbpoT0cif7GQs808XrmHXKdx9Zf/NdYB7wgzT/PNnJumgccEt3O4qILwNfrrNobM2+3gFeIjtpT4+IL3W12y6W1cY6jqx56kVgKfDnHQskDSVrQqpnEbB7F69j1inXFKxfiYj5wLXAP6SiWcAHJX1e0mBJRwE7ktUoeusYSTumE/OZwPURsQa4CjhE0mckDZI0RNI+kuq2/ddxNfB1SdtI2gT4Z+DaiFgNXA8cnC4gb5Bet7P/358B+0s6Mr3nLSR11yRmBjgpWP90JrAxQES8DBwMfJOsueUfgYMj4qV12P904AqyZqchpAQUEYuAicDpwHKyb+z/m8b/zy5L+74XeA54G/hq2vfjwEnAz8lqDa8Ci+vtJCJ+T3Yd45vAK2QXmXfq0Tu0AUseZMescZLuBq6KCP962Pol1xTMzCznpGBmZjk3H5mZWc41BTMzy/Xp3ykMHz48xo8f3+4wzMz6lLlz574UESPqLevTSWH8+PHMmTOn3WGYmfUpkmp/5Z9z85GZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnl+vQvms3MBpLxU27OpxecfVApr+GagpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyw0uc+eSFgBvAGuA1RExQdIw4FpgPLAAODIiXpUk4ALgQOAt4PiImFdmfGZmVTd+ys0tfb1W1BT2jYidI2JCmp8C3BER2wN3pHmAA4Dt02MycFELYjMzs4J2NB9NBKal6WnAYYXyKyNzP7C5pFFtiM/MbMAqOykEcJukuZImp7KREbE0Tb8AjEzTo4FFhW0Xp7L3kDRZ0hxJc5YvX15W3GZmA1Kp1xSAvSNiiaQtgdmSfltcGBEhKXqyw4iYCkwFmDBhQo+2NTOzrpVaU4iIJel5GTAD2B14saNZKD0vS6svAcYWNh+TyszMrEVKSwqSNpa0acc08GngMWAmMCmtNgm4MU3PBI5TZg9gRaGZyczMWqDM5qORwIzsTlMGAz+PiFskPQhcJ+lEYCFwZFp/FtntqPPJbkk9ocTYzMysjtKSQkQ8C+xUp/xlYL865QGcVFY8ZmbWPf+i2czMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJl95JqZhVUHM1rwdkHtTESqxonBbMBoqfDOlYxcVQxpv7GzUdmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeXc95FZP1Pl/oFq+1+qWnzmmoKZmRW4pmA2wFW5ZmGt55qCmZnlnBTMzCxXevORpEHAHGBJRBwsaRvgGmALYC5wbESskrQhcCWwG/AycFRELCg7PrOqcDOOVUErrimcDDwJvC/NnwOcFxHXSLoYOBG4KD2/GhHbSTo6rXdUC+Iza5uejoZmA0M7PxelNh9JGgMcBFyS5gV8Erg+rTINOCxNT0zzpOX7pfXNzKxFyq4pnA/8I7Bpmt8CeC0iVqf5xcDoND0aWAQQEaslrUjrv1RyjGalc9OQ9RWl1RQkHQwsi4i5Td7vZElzJM1Zvnx5M3dtZjbglVlT2As4VNKBwBCyawoXAJtLGpxqC2OAJWn9JcBYYLGkwcBmZBec3yMipgJTASZMmBAlxm9WiipfR6hybNYapdUUIuK0iBgTEeOBo4E7I+ILwF3A4Wm1ScCNaXpmmictvzMifNI3M2uhdvxO4VTgG5Lmk10zuDSVXwpskcq/AUxpQ2xmZgNaS7q5iIi7gbvT9LPA7nXWeRs4ohXxmFnv+aJ5/+ZfNJuZWc4d4pn1If6WbmVzTcHMzHJOCmZmlnPzkZn1mpuz+h8nBbNO+IRnA5GTglkf1UjSGii/UHYCbx4nBTPr1kBJLuakYNY0ZX1bbeSE7JO2NUtDSUHShyPi0bKDMTNrJjcr9VyjNYUL03CZVwA/i4gV5YVkZn1RZydg12L6loZ+pxARnwC+QNa19VxJP5f0qVIjMzOzlmv4mkJEPC3p28Ac4IfALmm4zNMj4hdlBWhWZf4WbM1Qpc9Ro9cUPgKcQDbe8mzgkIiYJ2kr4D7AScGsiap0krCBpdGawo+AS8hqBX/sKIyI51PtwWzA8Anb+rNGk8JBwB8jYg2ApPWAIRHxVkRMLy06MzNrqUaTwu3A/sCbaX4ocBuwZxlBmfV1rk1Yd6r6GWm0l9QhEdGREEjTQ8sJyczM2qXRmsIfJO0aEfMAJO0G/LGbbcz6jap+qzNrtkaTwteAf5P0PCDgA8BRpUVlZmZt0VBSiIgHJX0I2CEVPRUR75QXlpmZtUNPOsT7KDA+bbOrJCLiylKiMrMBx/0UVUOjP16bDvwZ8BCwJhUH4KRgZn2Ck05jGq0pTAB2jIgoMxgzM2uvRm9JfYzs4rKZmfVjjdYUhgNPSHoAWNlRGBGHlhKVmZm1RaNJ4YwygzAzs2po9JbUeyRtDWwfEbdLGgoMKjc0s9bzj9RsoGv07qMvAZOBYWR3IY0GLgb262KbIcC9wIbpda6PiO9K2ga4BtgCmAscGxGr0shuVwK7AS8DR0XEgl6+L7M/4btP+g7/rdqn0QvNJwF7Aa9DNuAOsGU326wEPhkROwE7A5+VtAdwDnBeRGwHvAqcmNY/EXg1lZ+X1jMzsxZqNCmsjIhVHTOSBpP9TqFTkenoRG/99Ajgk8D1qXwacFianpjmScv3SyO7mZlZizR6ofkeSacDG6Wxmf8e+I/uNpI0iKyJaDvgJ8AzwGsRsTqtspisKYr0vAggIlZLWkHWxPRSzT4nkzVlMW7cuAbDN3svN0+Y1ddoTWEKsBx4FPhbYBbQ7YhrEbEmInYGxgC7Ax/qZZzFfU6NiAkRMWHEiBHrujszMyto9O6jd4F/TY8ei4jXJN0FfBzYXNLgVFsYAyxJqy0BxgKLU/PUZmQXnM3MWsI1yMbvPnqOOtcQImLbLrYZAbyTEsJGwKfILh7fBRxOdgfSJODGtMnMNH9fWn6nu9UwM98m3Fo96fuowxDgCLLbU7syCpiWriusB1wXETdJegK4RtI/Ab8BLk3rXwpMlzQfeAU4usHYzMxyTiLrptHmo9pmnPMlzQW+08U2jwC71Cl/luz6Qm3522TJxszM2qTR5qNdC7PrkdUcejIWg5mZ9QGNnth/UJheDSwAjmx6NGZm/Uxfu3jdaPPRvmUHYmZm7ddo89E3uloeEec2Jxwz6w98sbfv6sndRx8lu20U4BDgAeDpMoIyM+uP+kKybDQpjAF2jYg3ACSdAdwcEceUFZiZWRX1tWsEPdVoUhgJrCrMr0plZmZ9Wl/49t5KjSaFK4EHJM1I84extkdTMzPrJxq9++gsSb8EPpGKToiI35QXllnv9ffqvVmZGu0lFWAo8HpEXEDWad02JcVkZmZt0ugtqd8luwNpB+BysgFzriIbjc3MrOV8LaAcjdYUPgccCvwBICKeBzYtKygzM2uPRi80r4qIkBQAkjYuMSazpvG3SbOeaTQpXCfpp2QD5HwJ+CK9HHDHrGqcOMzW6jYpSBJwLdlQmq+TXVf4TkTMLjk2sy75LiOz5us2KaRmo1kR8WHAicBazid/s9ZptPlonqSPRsSDpUZjZgOKm+6qp9Gk8DHgGEkLyO5AElkl4iNlBWZmZq3XZVKQNC4ifg98pkXxmJlZG3VXU/h3st5RF0q6ISL+qhVBmZlZe3T34zUVprctMxAzM2u/7pJCdDJtZmb9UHfNRztJep2sxrBRmoa1F5rfV2p0ZmbWUl0mhYgY1KpAzMys/XrSdbaZmfVzTgpmZpZr9MdrZpXQ2S9g/ctYK9NA+nyVVlOQNFbSXZKekPS4pJNT+TBJsyU9nZ7fn8ol6YeS5kt6RNKuZcVmZmb1lVlTWA18MyLmSdoUmCtpNnA8cEdEnC1pCjAFOBU4ANg+PT4GXJSezcwqr7903FhaUoiIpcDSNP2GpCeB0cBEYJ+02jTgbrKkMBG4MiICuF/S5pJGpf3YANBf/qnM+nJzU0uuKUgaD+wC/BoYWTjRvwCMTNOjgUWFzRanMicFM6ukvnzy70zpSUHSJsANwNci4vVszJ5McYjPHuxvMjAZYNy4cc0M1cwGiP54Mm+WUm9JlbQ+WUL4WUT8IhW/KGlUWj4KWJbKlwBjC5uPSWXvERFTI2JCREwYMWJEecGbmQ1ApdUU0jCelwJPRsS5hUUzgUnA2en5xkL5VyRdQ3aBeYWvJ/Qfvl5g1jeU2Xy0F3As8Kikh1LZ6WTJ4DpJJwILgSPTslnAgcB84C3ghBJjMzOzOsq8++j/896ut4v2q7N+ACeVFY+ZmXXP3VyYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjkPsmNmVsdA7R/JNQUzM8u5pmClWZdvWgP1W5pZu7mmYGZmOScFMzPLOSmYmVnO1xSsrXztwKxaXFMwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPL+e4jaznfcWRWXa4pmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8uV9uM1SZcBBwPLIuIvU9kw4FpgPLAAODIiXpUk4ALgQOAt4PiImFdWbFYe/zDNrG8rs6ZwBfDZmrIpwB0RsT1wR5oHOADYPj0mAxeVGJeZmXWitKQQEfcCr9QUTwSmpelpwGGF8isjcz+wuaRRZcVmZmb1tfqawsiIWJqmXwBGpunRwKLCeotT2Z+QNFnSHElzli9fXl6kZmYDUNs6xIuIkBS92G4qMBVgwoQJPd7e1l3xusGCsw9qYyRm1mytrim82NEslJ6XpfIlwNjCemNSmZmZtVCrk8JMYFKangTcWCg/Tpk9gBWFZiYzM2uRMm9JvRrYBxguaTHwXeBs4DpJJwILgSPT6rPIbkedT3ZL6gllxWVmZp0rLSlExF93smi/OusGcFJZsZiZWWP8i2YzM8t5OE7rlO8yMht4nBSsIe6+wmxgcFKwdeJkYda/+JqCmZnlnBTMzCzn5qMByheRzawe1xTMzCznpGBmZjknBTMzy/magr2HbzE1G9hcUzAzs5xrCgNIZ7UA1w7MrINrCmZmlnNSMDOznJOCmZnlfE2hH/I1AjPrLdcUzMws56RgZmY5JwUzM8s5KZiZWc4XmvsJX1w2s2ZwUuhjfPI3szK5+cjMzHJOCmZmlnNSMDOznJOCmZnlfKG5lzq74Lvg7IOash8zs3aoVE1B0mclPSVpvqQp7Y7HzGygqUxNQdIg4CfAp4DFwIOSZkbEE+2NLNPoN3p/8zezvqwySQHYHZgfEc8CSLoGmAi0NCn4pG5mA1mVksJoYFFhfjHwsdqVJE0GJqfZNyU91YLYGjUceKndQXSj6jFWPT6ofoxVjw+qH2PV40PnrFOMW3e2oEpJoSERMRWY2u446pE0JyImtDuOrlQ9xqrHB9WPserxQfVjrHp8UF6MVbrQvAQYW5gfk8rMzKxFqpQUHgS2l7SNpA2Ao4GZbY7JzGxAqUzzUUSslvQV4FZgEHBZRDze5rB6qpLNWjWqHmPV44Pqx1j1+KD6MVY9PigpRkVEGfs1M7M+qErNR2Zm1mZOCmZmlnNS6CFJR0h6XNK7kureDiZpB0kPFR6vS/paWnaGpCWFZQe2I8a03gJJj6Y45hTKh0maLenp9Pz+VscnaaykuyQ9kdY9ubCsSsewbtcs6YaJX6fya9PNE82Mr9u/kaR9az6Hb0s6LC27QtJzhWU7NzO+RmNM660pxDGzUF6FY7izpPvSZ+ERSUcVlpVyDLvr7kfShul4zE/HZ3xh2Wmp/ClJn+lVABHhRw8ewJ8DOwB3AxMaWH8Q8AKwdZo/AzilCjECC4Dhdcq/D0xJ01OAc1odHzAK2DVNbwr8DtixSscw/W2fAbYFNgAeLsR4HXB0mr4Y+Lsmx9ejvxEwDHgFGJrmrwAOL/kYNhQj8GYn5W0/hsAHge3T9FbAUmDzso5hV5+pwjp/D1ycpo8Grk3TO6b1NwS2SfsZ1NMYXFPooYh4MiJ68ivq/YBnImJhWTHV6kWMtSYC09L0NOCwdY9qrUbii4ilETEvTb8BPEn2q/eWaPAY5l2zRMQq4BpgoiQBnwSuT+s1/RjS87/R4cAvI+KtJsfRlV5/jqpyDCPidxHxdJp+HlgGjGhyHEV1P1M16xTjvh7YLx2vicA1EbEyIp4D5qf99YiTQvmOBq6uKftKqope1uymmR4K4DZJc5V1H9JhZEQsTdMvACNbH9paqXq8C/DrQnEVjmG9rllGA1sAr0XE6pryZurp36je5/CsdAzPk7Rhk+ODxmMcImmOpPs7mreo4DGUtDvZt/dnCsXNPoadfabqrpOOzwqy49XItt2qzO8UqkTS7cAH6iz6VkTc2IP9bAAcCpxWKL4I+B7ZCfl7wA+AL7Ypxr0jYomkLYHZkn4bEfcWV4iIkNTj+5abeAw3AW4AvhYRr6fiKh3D0nQVX3Gmu7+RpFHAh8l+A9ThNLIT4QZk97ufCpzZphi3Tp/DbYE7JT1KdqJbZ00+htOBSRHxbipuyjGsGieFOiJi/ybt6gBgXkS8WNh3Pi3pX4GberPjZsQYEUvS8zJJM8iqmvcCL0oaFRFL0z/DsnbEJ2l9soTws4j4RWHfVTmGnXXN8jKwuaTB6Ztcr7ps6So+ST35Gx0JzIiIdwr77viGvFLS5cApPY2vWTEWPofPSrqbrFZ4AxU5hpLeB9xM9mXh/sK+m3IMazTS3U/HOoslDQY2I/vMNaWrIDcfleuvqamypw9fh88Bj7U0orVxbCxp045p4NOFWGYCk9L0JKDl35pTG+mlwJMRcW7NskocQzrpmiWyq353kbXjQznHsCd/o04/h+k4H0Y5x7DbGCW9v6PZRdJwYC/giaocw/R3nQFcGRHX1ywr4xg20t1PMe7DgTvT8ZoJHJ3uTtoG2B54oMcRNPPK+UB4kJ2EFgMrgReBW2PtnQmzCuttTJa9N6vZfjrwKPBI+iOOakeMZHc3PJwej5N9C+rYfgvgDuBp4HZgWBvi25useegR4KH0OLBKxzDNH0h2Z9QzNcdw2/QPOR/4N2DDJsdX928ETAAuKaw3nuzb4no129+ZjuFjwFXAJiUcw25jBPZMcTycnk+s0jEEjgHeKXwGHwJ2LvMY1vtMkTVLHZqmh6TjMT8dn20L234rbfcUcEBvXt/dXJiZWc7NR2ZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJVE0nhJn+/FdldIOrz7NcvX2/dgfZeTglVS+vl+pWLoRUzjgUqdUPvDe7ByOSlYU0g6RtIDabCRn0oaJOlNSWdJejj1gDkyrTtC0g2SHkyPvVL5GZKmS/oVMD2tN1vZACeXSFooabikM5UGLUrbnaXCIDx1YjtV2WBCD0s6O5XtnGJ6RNKMjp5WJd0t6Xxlgw6dXGd+N0n3KOtZ9tZCVwfbSbo9vcY8SX8GnA18Ih2Tr6dj8i/pPT8i6W/TtpL0Y2UDo9wObNnNsV4g6fvpPT0gabueHNdO9jle0n+m2OdJ2jMtqn0PQyRdnl77N5L2TdsfL+nf099rgaSvSPpGWud+ScO6ek9WIc3+absfA+9BNiDNfwDrp/kLgePIuqk4JJV9H/h2mv45WQ+tAOPI+jeCbPCcucBGaf7HwGlp+rNpf8PJvr3OS+Xrkf2sf4tOYjsA+C/WDi7T0ZXBI8D/TNNnAuen6buBCwvb5/PA+mlfI9L8UcBlafrXwOfS9BBgKLAPcFNhX5MLx2BDYA7ZYCj/C5hNNsDKVsBrdDF4C9ngSB3dHxzX8RqNHtdO9jkUGJKmtwfmpOna9/DNwnv+EPD79H6PJ+t2YVOy8QZWAF9O651H1stt2z+rfnT/aHsV3fqF/YDdgAezvsHYiKzHyVWs7cF0LvCpNL0/sGNaF+B9yrrIhqxDuT+m6b3J+iAiIm6R9GqaXiDpZUm7kPWB/5uIeLmT2PYHLo80uExEvCJpM7LRs+5J60wj60umw7U1++iY3wH4S7JuxiE7iS9V1rHg6IiYkV7jbYDC++vwaeAjhesFm5GdgP8HcHVErAGel3RnJ++l6OrC83mF99rIca1nfeDHyoaUXEM24lg9ewM/AoiI30paWFj3rsgGRHpD0gqyLwqQ9Q/0kQbek1WAk4I1g4BpEXHaewqlUyJ9VSQ70XR83tYD9ug4eRbWB/hDg695Cdm30w8Al/Uu7E7VxtAxL+DxiPh4cWFKCo0Q8NWIuPU9hb0bYzrqTK/Lcf06Wcd/O6X9vN316nWtLEy/W5h/F59r+gxfU7BmuAM4XNlgPR0Dom/dxfq3AV/tmFHnA57/imwsACR9GiiOsDaDrEnpo7x38Jhas4ETJA3tiC0iVgCvSvpEWudY4J7OdlDwFDBC0sfTvtaX9Bfp2/FipVHDlHVdPBR4g6w5pcOtwN8pGycCSR9U1m35vcBR6ZrDKGDfBmI5qvB8X5pu9LjWsxmwNLIBZI4lqwVR5z38J/CFjvjJmqnWZehXqxhnb1tnEfGEpG+TDe25HllXwyd1sck/AD+R9AjZZ/Be4Mt11vu/wNWSjiU78b1AdpIiIlZJuotsyMY1XcR2Szo5zpG0CpgFnE7WH/3F6eT9LHBCA+9zVWr6+WFqghoMnE/W9fixwE8lnZne/xFk1y3WSHqYbJD3C0jXQ5R9fV9O1g//DLLxiJ8ga6O/j+69Px2/lWTjJUDjx7WeC4EbJB0H3MLamkXte7gQuEjZ6GirgeMjYmWdpjLro9x1tlWWssFX1kTE6vTt/KKI2DktWw+YBxwRaWD1gULSAmBCRLzU7lis/3FNwapsHHBdSgCrgC8BSNqR7AL2jIGWEMzK5pqC9QuSPsyf3oO/MiI+1o54mkHZuNnb1BSfWnuhuof7/AxwTk3xcxHxud7u0/oXJwUzM8v57iMzM8s5KZiZWc5JwczMck4KZmaW+2/W0V3/Q6XezwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.loc[~df[\"pbc\"],\"energy_corrected_per_atom\"].plot(kind=\"hist\",bins=100)\n", "plt.xlabel(\"energy_corrected_per_atom\")\n", "plt.title(\"Non-periodic\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Converting to ASE atoms" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from ase import Atoms" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def row_to_ase_atoms(row):\n", " symbols=row[\"_OCCUPATION\"]\n", " pbc = row[\"pbc\"]\n", " coordinates = row[\"_COORDINATES\"]\n", " cell = row[\"cell\"]\n", "\n", " if row[\"COORDINATES_TYPE\"]==\"relative\":\n", " atoms = Atoms(symbols=symbols, scaled_positions=coordinates, cell=cell, pbc=pbc)\n", " elif row[\"COORDINATES_TYPE\"]==\"absolute\":\n", " atoms = Atoms(symbols=symbols, positions=coordinates,pbc=pbc)\n", " else:\n", " raise ValueError(\"Unrecognized COORDINATES_TYPE:\"+row[\"COORDINATES_TYPE\"])\n", " return atoms" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting of one row" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "row=df.loc[0]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Atoms(symbols='Cu2', pbc=True, cell=[[4.848667, 0.0, 1.908224], [-5.7556329999999996, 3.56786, -2.470047], [0.0, 0.0, 9.175992]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atoms = row_to_ase_atoms(row)\n", "atoms" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting whole dataset" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "df[\"ase_atoms\"]=df.apply(row_to_ase_atoms, axis=1)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
COORDINATES_TYPE_COORDINATES_OCCUPATIONNUMBER_OF_ATOMSenergyforcespbccellenergy_correctedenergy_corrected_per_atomdminw_energyw_forcesase_atoms
0relative[[0.0, 0.0, 0.0], [0.8160455395, 0.0801130089,...[Cu, Cu]2-90486.436230[[-0.1915810373, 0.0379360839, 0.4867174382], ...True[[4.848667, 0.0, 1.908224], [-5.75563299999999...-1.525491-0.7627453.5560002.480000e-08[5.145e-07, 5.145e-07](Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C...
1absolute[[0.0, 0.0, 0.0], [5.57258, 0.0, 0.0], [4.1794...[Cu, Cu, Cu, Cu]4-180970.297879[[0.0698542207, 0.0068889898, 0.0002778336], [...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-0.476400-0.1191004.6205381.830000e-08[4.822e-07, 4.467e-07, 4.207e-07, 4.4590000000...(Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C...
2relative[[0.0, 0.0, 0.0], [0.4123217421, 0.50162497540...[Cu, Cu]2-90485.083515[[-0.027534297000000003, 0.1173325365, 0.14462...True[[6.391525, 0.0, -2.533046], [4.143618, 6.1084...-0.172775-0.0863885.0800001.810000e-08[4.6140000000000004e-07, 4.6140000000000004e-07](Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C...
3absolute[[0.0, 0.0, 0.0], [4.556401, 1.091969, -1.0795...[Cu, Cu, Cu, Cu]4-180972.777650[[-0.0855274058, 2.5143827853, 2.3198918138], ...False[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ...-2.956170-0.7390431.9925022.450000e-08[5.1e-08, 6.446e-07, 3.8580000000000003e-07, 4...(Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C...
4relative[[0.6496935505, 0.3274752788, 0.5129023611], [...[Cu, Cu, Cu]3-135731.709869[[-0.1535250974, -0.047388247, 0.0613077861000...True[[6.143789, -0.257681, -0.07058199999999999], ...-4.343759-1.4479203.3530723.640000e-08[9.339000000000001e-07, 9.127000000000001e-07,...(Atom('Cu', [2.9624640000784885, 1.53561299992...
\n", "
" ], "text/plain": [ " COORDINATES_TYPE _COORDINATES \\\n", "0 relative [[0.0, 0.0, 0.0], [0.8160455395, 0.0801130089,... \n", "1 absolute [[0.0, 0.0, 0.0], [5.57258, 0.0, 0.0], [4.1794... \n", "2 relative [[0.0, 0.0, 0.0], [0.4123217421, 0.50162497540... \n", "3 absolute [[0.0, 0.0, 0.0], [4.556401, 1.091969, -1.0795... \n", "4 relative [[0.6496935505, 0.3274752788, 0.5129023611], [... \n", "\n", " _OCCUPATION NUMBER_OF_ATOMS energy \\\n", "0 [Cu, Cu] 2 -90486.436230 \n", "1 [Cu, Cu, Cu, Cu] 4 -180970.297879 \n", "2 [Cu, Cu] 2 -90485.083515 \n", "3 [Cu, Cu, Cu, Cu] 4 -180972.777650 \n", "4 [Cu, Cu, Cu] 3 -135731.709869 \n", "\n", " forces pbc \\\n", "0 [[-0.1915810373, 0.0379360839, 0.4867174382], ... True \n", "1 [[0.0698542207, 0.0068889898, 0.0002778336], [... False \n", "2 [[-0.027534297000000003, 0.1173325365, 0.14462... True \n", "3 [[-0.0855274058, 2.5143827853, 2.3198918138], ... False \n", "4 [[-0.1535250974, -0.047388247, 0.0613077861000... True \n", "\n", " cell energy_corrected \\\n", "0 [[4.848667, 0.0, 1.908224], [-5.75563299999999... -1.525491 \n", "1 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -0.476400 \n", "2 [[6.391525, 0.0, -2.533046], [4.143618, 6.1084... -0.172775 \n", "3 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, ... -2.956170 \n", "4 [[6.143789, -0.257681, -0.07058199999999999], ... -4.343759 \n", "\n", " energy_corrected_per_atom dmin w_energy \\\n", "0 -0.762745 3.556000 2.480000e-08 \n", "1 -0.119100 4.620538 1.830000e-08 \n", "2 -0.086388 5.080000 1.810000e-08 \n", "3 -0.739043 1.992502 2.450000e-08 \n", "4 -1.447920 3.353072 3.640000e-08 \n", "\n", " w_forces \\\n", "0 [5.145e-07, 5.145e-07] \n", "1 [4.822e-07, 4.467e-07, 4.207e-07, 4.4590000000... \n", "2 [4.6140000000000004e-07, 4.6140000000000004e-07] \n", "3 [5.1e-08, 6.446e-07, 3.8580000000000003e-07, 4... \n", "4 [9.339000000000001e-07, 9.127000000000001e-07,... \n", "\n", " ase_atoms \n", "0 (Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C... \n", "1 (Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C... \n", "2 (Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C... \n", "3 (Atom('Cu', [0.0, 0.0, 0.0], index=0), Atom('C... \n", "4 (Atom('Cu', [2.9624640000784885, 1.53561299992... " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] } ], "metadata": { "kernelspec": { "display_name": "Python (ace)", "language": "python", "name": "ace" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": false, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": false, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }